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The vision…
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The vision (2)
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More complicated: the word-count problem

• Huge file → extract frequencies of words

• Example

Extracted frequencies:

• <Logic,1>, <will,2>, <get,1>, <you,2>, …

Logic will get you from A to B.

Imagination will take you everywhere.

Einstein once 

said…



The vision (3)
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MapReduce programming model

• Data model: everything is a <key,value> pair

• Programming model - two core functions

– Map(key,value): Invoked for every split of the input data. Value 

corresponds to the split. 

– Reduce(key,list(values)): Invoked for every unique key emitted 

by Map. List(values) corresponds to all values emitted from ALL 

mappers for this key.

• These are second-order functions

– Map(key,value, MapperClassName)

– Reduce(key,list(values), ReducerClassName)

→ parallelism and deployment handled by the system
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MapReduce programming model (2)

• The word-count problem

– Input: Text file, broken in splits

– Output: Frequency of each word observed in the file

– Map(key,value): value: a split of the text file
for each word in value

emit pair <word,+1>

– Reduce(key,list(values)): Key: word, values: list of 

(+1’s)
count=0

for each value in list(values)

count+=value

emit pair<key,count>
6



MapReduce – under the hood
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• MapReduce simple but weak for some reqs.

– Cannot define complex processes

– Everything file-based, no distributed memory

– Procedural → difficult to optimize

• Dataflow 

– Processing expressed as a DAG, tree, graph with 

cycles, …

– Vertices: processing tasks

– Edges: Communication

• DAG: Spark, Dryad

• Tree: Dremel

• Directed graph with cycles: Pregel
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Spark DAG example

Dataflow programming model



• Describing the processing tasks
– Declarative languages, e.g., Dremel

– Functional programming, e.g., Spark

– Domain-specific languages, e.g., Pregel
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Dataflow programming model (2)

SELECT DocId AS Id, COUNT(Name.Language.Code) 

WITHIN Name AS Cnt FROM t 
WHERE REGEXP(Name.Url, '^http'); 

val wordCounts = textFile.flatMap(line => line.split(" ")).

 map(word => (word, 1)).
 reduceByKey((a, b) => a + b)
wordCounts.collect()

class PageRankVertex 
   : public Vertex<double, void, double> { 

  public: virtual void Compute(MessageIterator* msgs) {
       const int64 n = GetOutEdgeIterator().size();
       SendMessageToAllNeighbors(GetValue() / n); 
  } 

    }; 

for graph 

processing



Why Spark? (1)
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Collections

Similar API ☺



Which programming language is 

this?

Integer totalAgeReduce = 

roster.stream()

.map(Person::getAge)

.reduce( 0, (a, b) -> a + b);

Map<String, List<String>> a = words

    .stream().collect(

       Collectors.groupingBy(w -> 

sortChars(w)));



PLs that have a functional 

collection interface like Scala

C++, C#, F#, Clojure, Haskell, Java8, 

JavaScript, Perl, PHP, Python, Ruby, 

Scheme, Smalltalk, Standard ML, OCAML, 

…

See 
https://en.wikipedia.org/wiki/Map_(higher-order_function)

https://en.wikipedia.org/wiki/Map_(higher-order_function)


Fault Tolerance

• Essential for scaling out

• The main reason behind the success of 

MapReduce in Google

• Requires writing intermediate data to disk
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Fault Tolerance in Spark

• Data

– Immutable

– In-memory

• Operations = Functional transformations

• Fault tolerance = Replay operations
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Why Spark? (2)

15http://spark.apache.org/

• Compared to Hadoop MapReduce, improves 

efficiency through:

– General execution graphs

– In-memory storage
Up to 10× faster on disk,

100× in memory

http://spark.apache.org/


Why Spark? (3)
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Why Spark? (4)
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Learn Scala
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https://twitter.github.io/scala_school/

https://twitter.github.io/scala_school/


QUESTIONS?
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