
Programming for Data Science at Scale

Data-Parallel
Programming Model

Amir Shaikhha, Fall 2024

The vision…

2

Huge

data

file
U Result

split 1

split 2

split 3

split 4

split 5

Sample function: convert all text to upper case

Map

Map

Map

Map

Map

out 1

out 2

out 3

out 4

out 5

convertUpper()

Splits may be

stored at diff. nodes

The vision (2)

3

More complicated: the word-count problem

• Huge file → extract frequencies of words

• Example

Extracted frequencies:

• <Logic,1>, <will,2>, <get,1>, <you,2>, …

Logic will get you from A to B.

Imagination will take you everywhere.

Einstein once

said…

The vision (3)

4

Huge

data

file
U Result

split 1

split 2

split 3

split 4

split 5

Sample application: the word-count example

Map

Map

Map

Map

Map

Red

uce

Red

uce

Red

uce

out 1

out 2

out 3

Local

computation

Merging of

results

grouped by word

MapReduce programming model

• Data model: everything is a <key,value> pair

• Programming model - two core functions

– Map(key,value): Invoked for every split of the input data. Value

corresponds to the split.

– Reduce(key,list(values)): Invoked for every unique key emitted

by Map. List(values) corresponds to all values emitted from ALL

mappers for this key.

• These are second-order functions

– Map(key,value, MapperClassName)

– Reduce(key,list(values), ReducerClassName)

→ parallelism and deployment handled by the system

5

MapReduce programming model (2)

• The word-count problem

– Input: Text file, broken in splits

– Output: Frequency of each word observed in the file

– Map(key,value): value: a split of the text file
for each word in value

emit pair <word,+1>

– Reduce(key,list(values)): Key: word, values: list of

(+1’s)
count=0

for each value in list(values)

count+=value

emit pair<key,count>
6

MapReduce – under the hood

7

Input

data

Split

Split

Map

Map

Reduce

Reduce

<Logic,1>

<will,1>

<get,1>

<will,1>

<take,1>

<Imagi…,1>

…

…

<Logic,{1}>

<will,{1,1}>

<get,{1}>

<take,{1}>

<Imag..,{1}>

…

…

<Logic,1>

<will,2>

<get,1>

<take,1>

<Imagi…,1>

…

…

DFS
DFS

Map

phase

Shuffle phase

Sort Send Merge
Reduce

phase

for each word in value

emit pair <word,+1>

for each value in list(values)

count+=value

emit pair<word,count>

• MapReduce simple but weak for some reqs.

– Cannot define complex processes

– Everything file-based, no distributed memory

– Procedural → difficult to optimize

• Dataflow

– Processing expressed as a DAG, tree, graph with

cycles, …

– Vertices: processing tasks

– Edges: Communication

• DAG: Spark, Dryad

• Tree: Dremel

• Directed graph with cycles: Pregel

8

Spark DAG example

Dataflow programming model

• Describing the processing tasks
– Declarative languages, e.g., Dremel

– Functional programming, e.g., Spark

– Domain-specific languages, e.g., Pregel

9

Dataflow programming model (2)

SELECT DocId AS Id, COUNT(Name.Language.Code)

WITHIN Name AS Cnt FROM t
WHERE REGEXP(Name.Url, '^http');

val wordCounts = textFile.flatMap(line => line.split(" ")).

 map(word => (word, 1)).
 reduceByKey((a, b) => a + b)
wordCounts.collect()

class PageRankVertex
 : public Vertex<double, void, double> {

 public: virtual void Compute(MessageIterator* msgs) {
 const int64 n = GetOutEdgeIterator().size();
 SendMessageToAllNeighbors(GetValue() / n);
 }

 };

for graph

processing

Why Spark? (1)

10

Collections

Similar API ☺

Which programming language is

this?

Integer totalAgeReduce =

roster.stream()

.map(Person::getAge)

.reduce(0, (a, b) -> a + b);

Map<String, List<String>> a = words

 .stream().collect(

 Collectors.groupingBy(w ->

sortChars(w)));

PLs that have a functional

collection interface like Scala

C++, C#, F#, Clojure, Haskell, Java8,

JavaScript, Perl, PHP, Python, Ruby,

Scheme, Smalltalk, Standard ML, OCAML,

…

See
https://en.wikipedia.org/wiki/Map_(higher-order_function)

https://en.wikipedia.org/wiki/Map_(higher-order_function)

Fault Tolerance

• Essential for scaling out

• The main reason behind the success of

MapReduce in Google

• Requires writing intermediate data to disk

13

Fault Tolerance in Spark

• Data

– Immutable

– In-memory

• Operations = Functional transformations

• Fault tolerance = Replay operations

14

Why Spark? (2)

15http://spark.apache.org/

• Compared to Hadoop MapReduce, improves

efficiency through:

– General execution graphs

– In-memory storage
Up to 10× faster on disk,

100× in memory

http://spark.apache.org/

Why Spark? (3)

16

Why Spark? (4)

17

Learn Scala

18
https://twitter.github.io/scala_school/

https://twitter.github.io/scala_school/

QUESTIONS?

19

	Slide 1
	Slide 2: The vision…
	Slide 3: The vision (2)
	Slide 4: The vision (3)
	Slide 5: MapReduce programming model
	Slide 6: MapReduce programming model (2)
	Slide 7: MapReduce – under the hood
	Slide 8
	Slide 9
	Slide 10: Why Spark? (1)
	Slide 11: Which programming language is this?
	Slide 12: PLs that have a functional collection interface like Scala
	Slide 13: Fault Tolerance
	Slide 14: Fault Tolerance in Spark
	Slide 15: Why Spark? (2)
	Slide 16: Why Spark? (3)
	Slide 17: Why Spark? (4)
	Slide 18: Learn Scala
	Slide 19: Questions?

