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The vision...
Sample function: convert all text to upper case

Splits may be
stored at diff. nodes

convertUpper()



The vision (2)
More complicated: the word-count problem

* Huge file - extract frequencies of words
« Example

Logic will get you from A to B.

Imagination will take you everywhere.

Einstein once

Extracted frequencies: said...
* <Logic,1>, <will,2>, <get,1>, <you,2>, ...



The vision (3)

Sample application: the word-count example
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MapReduce programming model

« Data model: everything is a <key,value> pair

* Programming model - two core functions

— Map(key,value): Invoked for every split of the input data. Value
corresponds to the split.

— Reduce(key list(values)): Invoked for every unique key emitted
by Map. List(values) corresponds to all values emitted from ALL
mappers for this key.

* These are second-order functions
— Map(key,value, MapperClassName)
— Reduce(key list(values), ReducerClassName)

—> parallelism and deployment handled by the system



MapReduce programming model (2)

* The word-count problem
— Input: Text file, broken in splits
— Output: Frequency of each word observed in the file

— Map(key,value): value: a split of the text file
for each word in wvalue

emit pair <word,+1>

— Reduce(key,list(values)): Key: word, values: list of
(+1's)
count=0
for each value in list (values)
count+=value

emit pair<key,count>
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MapReduce — under the hood
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for each word in wvalue for each wvalue in list(values)

emit pair <word,+1> count+=value 7
emit pair<word, count>



Dataflow programming model

« MapReduce simple but weak for some regs.
— Cannot define complex processes
— Everything file-based, no distributed memory
— Procedural - difficult to optimize
« Dataflow
— Processing expressed as a DAG, tree, graph with

cycles, ... ORQ

— Vertices: processing tasks @ Q
— Edges: Communication
« DAG: Spark, Dryad ﬁQ%

 Tree: Dremel

. . Spark DAG I
 Directed graph with cycles: Pregel bl Sampe



Dataflow programming model (2)

* Describing the processing tasks

— Declarative languages, e.g., Dremel

SELECT Docld AS Id, COUNT(Name.Language.Code)
WITHIN Name AS Cnt FROM t
WHERE REGEXP(Name.Url, '"*http");

— Functional programming, e.g., Spark
val wordCounts = textFile.flatMap(line => line.split(" )).
map(word => (word, 1)).
reduceByKey((a, b) =>a + b)
wordCounts.collect()

for graph
— Domain-specific languages, e.g., Prege’ processing

class PageRankVertex
: public Vertex<double, void, double> {
public: virtual void Compute(Messagelterator* msgs) {
const int64 n = GetOutEdgelterator().size();
SendMessageToAlINeighbors(GetValue() / n);

}



Why Spark? (1)

Scala—

Collections
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Which programming language is
this?

Integer totalAgeReduce =
roster.stream/()

.map (Person: :getAge)

.reduce( 0, (a, b) -> a + b);

Map<String, List<String>> a = words
.Stream() .collect (
Collectors.groupingBy (w —->
sortChars (w) ) ) ;



PLs that have a functional
collection interface like Scala

C++, C#, F#, Clojure, Haskell, Java8,
JavaScript, Perl, PHP, Python, Ruby,
Scheme, Smalltalk, Standard ML, OCAML,

See
https://en.wikipedia.org/wiki/Map_(higher-order_function)



https://en.wikipedia.org/wiki/Map_(higher-order_function)

Fault Tolerance

« Essential for scaling out

 The main reason behind the success of
MapReduce in Google

* Requires writing intermediate data to disk
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Fault Tolerance In Spark

 Data
— Immutable
— In-memory

« Operations = Functional transformations
 Fault tolerance = Replay operations
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Why Spark? (2)

« Compared to Hadoop MapReduce, improves
efficiency through:

— General execution graphs Up to 10 X faster on disk,
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Logistic regression in Hadoop and Spark
http://spark.apache.org/ 15



http://spark.apache.org/

Why Spark? (3)

® Apache Spark ® Apache Hadoo . .
P P P P : + Add comparison
Software Software
Worldwide ¥ 8/22/13 - 9/22/23 ~ All categories ¥ Web Search +

L O
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Why Spark? (4)

® Apache Spark ® Apache Hadoo PyTorch .
P P P P Y . + Add comparison
Software Software Computer application
Worldwide ¥ 8/22/13 - 9/22/23 ~ All categories ¥ Web Search ¥
Interest over time @ d O <

AN Nha
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Average Sep 'I_, 2013 Feb1,2017 Jul 1, 2020
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L earn Scala

Scala School!

From @ to Distributed Service

Other Languages:

st=20f
Pycckuin
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About

Scala school started as a series of lectures at Twitter to prepare experienced
engineers to be productive Scala programmers. Scala is a relatively new
language, but draws on many familiar concepts. Thus, these lectures assumed
the audience knew the concepts and showed how to use them in Scala. We
found this an effective way of getting new engineers up to speed quickly. This
is the written material that accompanied those lectures. We have found that
these are useful in their own right.

https://twitter.github.io/scala_schoaol/

Lessons

Basics
Values, functions, classes, methods, inheritance, try-
catch-finally. Expression-oriented programming
Basics continued
Case classes, objects, packages, apply, update,
Functions are Objects (uniform access principle), pattern
matching.
Collections
Lists, Maps, functional combinators (map, foreach, filter,
zip, folds)
Pattern matching & functional composition
More functions! PartialFunctions, more Pattern Matching
Type & polymorphism basics

Racir Tinae and hvna nalhimnrnhiem tuna infaranca
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https://twitter.github.io/scala_school/

QUESTIONS?
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