Programming for Data Science at Scale

Functional Collections in Scala

&%\ THE UNIVERSITY
\@N/: of EDINBURGH

D
EERS

Amir Shaikhha, Fall 2024



What is Scala®?

Statically typed
OO & FP

Originally running on the JVM
— Fully interoperable with Java
— As fast as Java

JavaScript Backend
— Interoperable with JavaScript

LLVM Backend
— Interoperable with native C code



Make Java Better

Pizza into Java:
Translating theory into practice

Martin Odersky Philip Wadler
University of Karlsruhe University of Glasgow
Abstract e parametric polymorphism,
Pizza is a strict superset of Java that incorporates three e higher-order functions, and

ideas from the academic communitv: parametric poly mor-
phism, higher-order functions,
Pizza is defined by translation
the Java Virtual Machine, requ
strain the design space. Nonet

Java, with only a few rough ed

s accessible by translat-
jat both figuratively and
by translation into Java.
te into Java strongly con-
e this, it turns out that

1 Introduction zza fits smoothly to Java,




Make a Better Java

2004: First release

2007: Adoption begins
2008: First Scala conference
2021: Scala 3 released




Philosophy

» Scalable Language
« Abstraction and Composition
« Growable Language



Java vs. Scala Example

Java:

public class Person {
public final String name;
public final int age;
Person (String name, 1int age)
this.name = name;
this.age = age;

class Person(val name:




Java vs. Scala Example (cont.)

Java:

import java.util.ArrayList;

Person|[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>() ;
ArrayList<Person> adultsList = new ArrayList<Person>() ;
for (int 1 = 0; 1 < people.length; i++4)
(people[i] .age < 18 ? minorsList : adultsList)
.add (peoplelil]):;

minors = minorsList.toArray (people);

adults = adultsList.toArray (people);

val people: Array|[Person]
val (minors, ladults) =
people.partition( .age < 18) // a lambda




Basics

* Every value Is an object
* Every operation is a method call

* Everything is an expression
— No statements
— No need for return and side-effects



Example: Expressions

val a: Int = 10 // type can also be inferred
val b = a + 10 // same as a.+(10)

def max(x: Int, y: Int)
if (x > y) x else vy

val max (10, 5)

println (




Classes & Traits

Scala Classes
« Will behave exactly like a Java class
Scala Traits

» Like Java interfaces
— |n addition allow concrete methods, fields,
types
* Like Scala classes
— Without constructor parameters

 Allow (a form of) multiple inheritence

10



Example: Complex Numbers

class Complex (val re: Int, val im: Int) {

def +(that: Complex) =
new Complex (this.re + that.re, this.im + that.im)

//

override def toString =
.format (re, im)

= new Complex (1,
new Complex (2,




Example: Trait

Ordered[A] extends Java.lang.Comparable[A] {
< (that: : Boolean = (this compareTo that)
> (that: : Boolean = (this compareTo that)
<= (that: : Boolean = (this compareTo that)
>= (that: : Boolean = (this compareTo that)

<
>
<=
>=

case class Person(val name: String, val age: Int)
extends Ordered[Person] {

def compareTo (that: Person): Int =
if (name < that.name) -1
else 1f (name > that.name) 1
age - that.age

val = new Person (
val = new Person (
val = new Person (
val = List(pl, p2,
ps.sorted

P3)




Functional Programming

* Use of functions
— The mathematical sense
— Referential transparency (no side effects)

* Immutable objects
 Functions are values

13



FP In Scala

Immutable variables instead of mutable
variables

— Use val instead of var

Immutable collections In the standard
ibrary
—unction literals

Higher-order functions
— Functions that take or return functions

— Almost eliminate the need for loops over
collections




FP in Scala (cont.)

 Function literals

val succ = (x: Int) => x + 1

succ (1)

* Equivalent forms

(x: Int) => x + 1
x => x + 1 // infer type
+ 1 // placeholder notation

* Higher-order functions

val xs = List (1, 2,
xs.foreach (println)

xs.forall( < 10)

Xs.map( * 2)

15



Everything Is an object

* Functions are objects, too
* Instances of trait Functionl [A, B]
— Generated by the compiler

trait Functionl[R, A] {

def apply(x: A): R
}

16



Syntactic Sugar

* Why does this one work?

val succ = (x: Int) => x + 1

succ (1)

« fun (args) Is desugared to
fun.apply(args)

* You can define your own apply methods
* You can extend FunctionN

17



Scala Collections

« Generic
— List[T]
- Seq|T]
—Map [K, V]
« Mutable and immutable implementations
— Default is immutable

18



capitals

someCity

resOfAdd
)

filtered

Example: Maps

capitals(

capitals + (

capitals.filter(

19



Function Subtypes

* Many collections are functions
- Seqg[T] ISInt => T
—Set[T] IST => Boolean
—~Map[K,V]ISK => V

val even

val resl
val res?




For comprehensions

* More general than for-loops

« Syntactic sugar for
—flatMap
—filter

—map

for (p <- persons; pr <- p.projects;

if pr.overdue) yield p.name

21



Pattern Matching

* A powerful switch statement
— Expression, really

* A way to match and deconstruct structured
data

// Define a set of case classes for representing binary trees.
sealed abstract class Tree

case class Node (elem: Int, left: Tree, right: Tree) extends Tree
case object Leaf extends Tree

// Return the in-order traversal sequence of a given tree.
def inOrder (t: Tree): List[Int] = t match {
case Node (e, 1, r) => inOrder(l) ::: List(e) ::: inOrder(r)
case Leaf => List()

}

22



What to use for this course

e Version

— Scala 2.12
* Testing

— ScalaTest

 Build tool
— sbt

23



Testing with ScalaTest

import collection.mutable.Stack
import org.scalatest.

class ExampleSpec extends FlatSpec with Matchers {

should
new Stack[Int]

should be (2)
should be (1)

it should
val emptyStack = new Stack[Int]
a [NoSuchElementException] should be thrownBy ({
emptyStack.pop ()




QUESTIONS?

25



DEMO TIME ©

26



	Slide 1
	Slide 2: What is Scala?
	Slide 3: Make Java Better
	Slide 4: Make a Better Java
	Slide 5: Philosophy
	Slide 6: Java vs. Scala Example
	Slide 7: Java vs. Scala Example (cont.)
	Slide 8: Basics
	Slide 9: Example: Expressions
	Slide 10: Classes & Traits
	Slide 11: Example: Complex Numbers
	Slide 12: Example: Trait
	Slide 13: Functional Programming
	Slide 14: FP in Scala
	Slide 15: FP in Scala (cont.)
	Slide 16: Everything is an object
	Slide 17: Syntactic Sugar
	Slide 18: Scala Collections
	Slide 19: Example: Maps
	Slide 20: Function Subtypes
	Slide 21: For comprehensions
	Slide 22: Pattern Matching
	Slide 23: What to use for this course
	Slide 24: Testing with ScalaTest
	Slide 25: Questions?
	Slide 26: Demo time 

