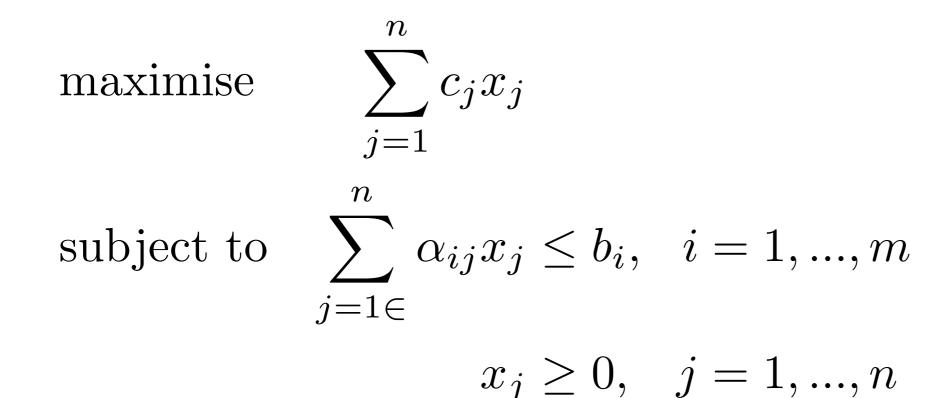
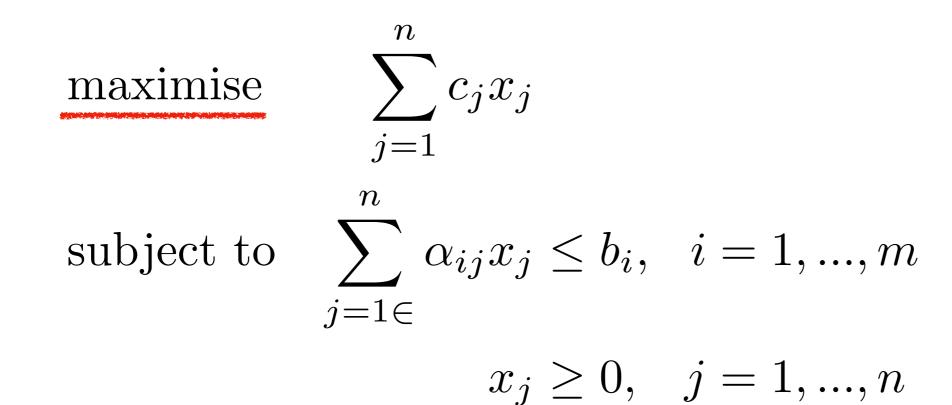
Algorithms and Data Structures

The Simplex Method

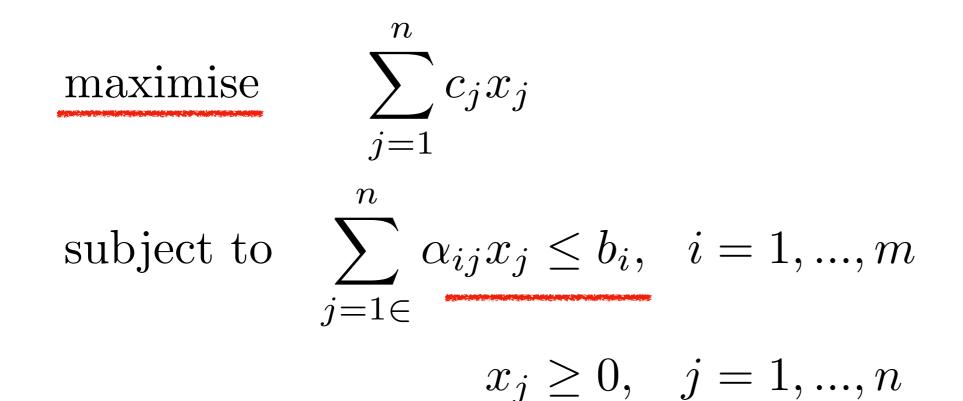
Linear Programs in Standard Form



Linear Programs in Standard Form



Linear Programs in Standard Form



Given a Linear Program (LP) in standard form:

Given a Linear Program (LP) in standard form:

Return an optimal solution (i.e., a feasible solution that maximises the objective function), or

Given a Linear Program (LP) in standard form:

Return an optimal solution (i.e., a feasible solution that maximises the objective function), or

Return that the LP is infeasible, or

Given a Linear Program (LP) in standard form:

Return an optimal solution (i.e., a feasible solution that maximises the objective function), or

Return that the LP is infeasible, or

Return that the LP is unbounded.

The Simplex Method (explained via example)

Maximise $5x_1 + 4x_2 + 3x_3$

subject to $2x_1 + 3x_2 + x_3 \le 5$ $4x_1 + x_2 + 2x + 3 \le 11$ $3x_1 + 4x_2 + 2x_3 \le 8$ $x_1, x_2, x_3 \ge 0$

For each constraint we introduce a *slack variable*:

For each constraint we introduce a *slack variable*:

e.g., for the constraint $2x_1 + 3x_2 + x_3 \le 5$, we introduce variable w_1 and we write

$$w_1 = 5 - 2x_1 - 3x_2 - x_3$$

Maximise $5x_1 + 4x_2 + 3x_3$

subject to $2x_1 + 3x_2 + x_3 \le 5$ $4x_1 + x_2 + 2x + 3 \le 11$ $3x_1 + 4x_2 + 2x_3 \le 8$ $x_1, x_2, x_3 \ge 0$

Maximise $5x_1 + 4x_2 + 3x_3$

subject to $w_1 = 5 - 2x_1 + 3x_2 + x_3$ $w_2 = 11 - 4x_1 + x_2 + 2x + 3$ $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$ $x_1, x_2, x_3 \ge 0$

Maximise $5x_1 + 4x_2 + 3x_3$

subject to

$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3 \ge 0$

Is this equivalent to the original LP?

Maximise $5x_1 + 4x_2 + 3x_3$

subject to $w_{1} = 5 - 2x_{1} + 3x_{2} + x_{3}$ $w_{2} = 11 - 4x_{1} + x_{2} + 2x + 3$ $w_{3} = 8 - 3x_{1} + 4x_{2} + 2x_{3}$ $x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \ge 0$

For each constraint we introduce a *slack variable*:

e.g., for the constraint $2x_1 + 3x_2 + x_3 \le 5$, we introduce variable w_1 and we write

 $w_1 = 5 - 2x_1 - 3x_2 - x_3$

For each constraint we introduce a *slack variable*:

e.g., for the constraint $2x_1 + 3x_2 + x_3 \le 5$, we introduce variable w_1 and we write

 $w_1 = 5 - 2x_1 - 3x_2 - x_3$

We also introduce a slack variable ζ for the objective function.

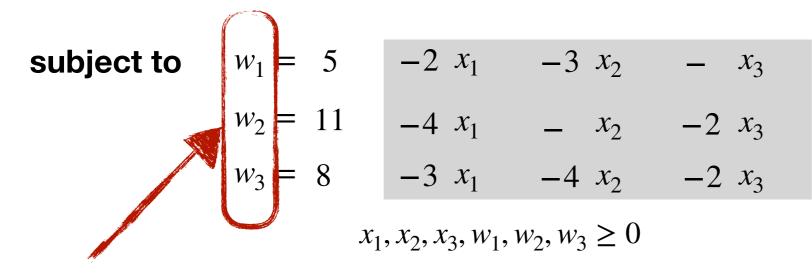
Maximise $\zeta = 5x_1 + 4x_2 + 3x_3$

subject to $w_{1} = 5 - 2x_{1} + 3x_{2} + x_{3}$ $w_{2} = 11 - 4x_{1} + x_{2} + 2x + 3$ $w_{3} = 8 - 3x_{1} + 4x_{2} + 2x_{3}$ $x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \ge 0$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

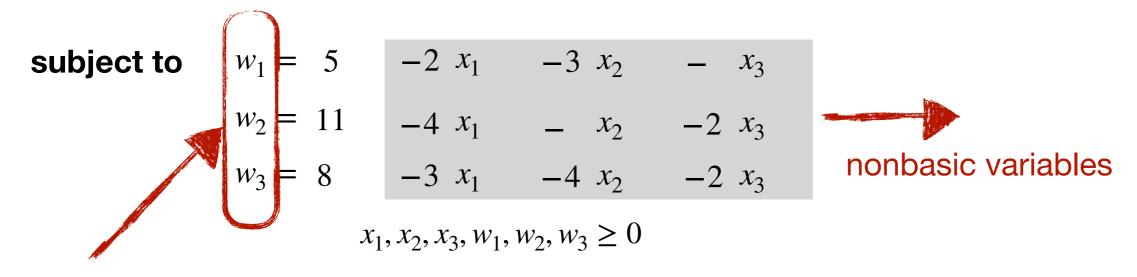
subject to $w_1 = 5$ $-2 x_1$ $-3 x_2$ $-x_3$ $w_2 = 11$ $-4 x_1$ $-x_2$ $-2 x_3$ $w_3 = 8$ $-3 x_1$ $-4 x_2$ $-2 x_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$



basic variables

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$



basic variables

Maximise $5x_1 + 4x_2 + 3x_3$

subject to $w_{1} = 5 - 2x_{1} + 3x_{2} + x_{3}$ $w_{2} = 11 - 4x_{1} + x_{2} + 2x + 3$ $w_{3} = 8 - 3x_{1} + 4x_{2} + 2x_{3}$ $x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \ge 0$

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Improve this solution to some $\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1, \bar{w}_2, \bar{w}_3$ such that $5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5x_1 + 4x_2 + 3x_3$

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Improve this solution to some $\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1, \bar{w}_2, \bar{w}_3$ such that $5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5x_1 + 4x_2 + 3x_3$

Continue until no further improvement is possible (in that case we are at an optimal solution).

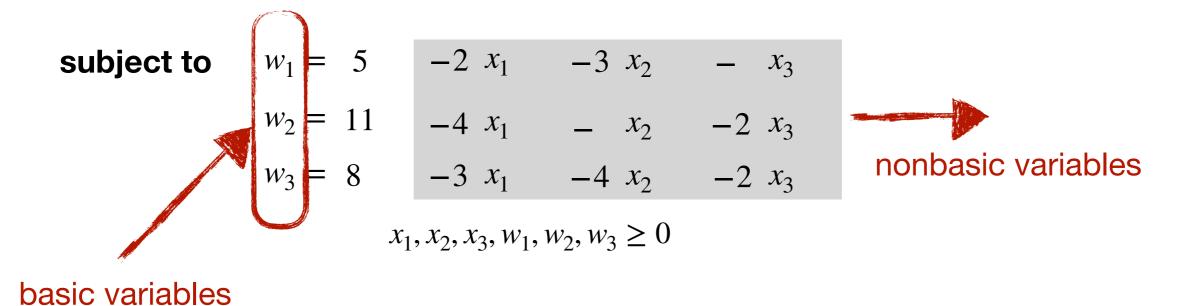
Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Improve this solution to some $\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1, \bar{w}_2, \bar{w}_3$ such that $5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5x_1 + 4x_2 + 3x_3$

Continue until no further improvement is possible (in that case we are at an optimal solution).

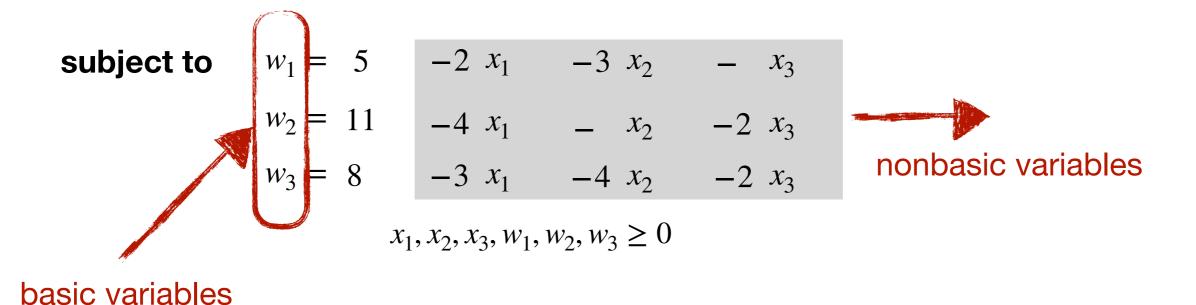
Does this remind you of something?

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$



Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

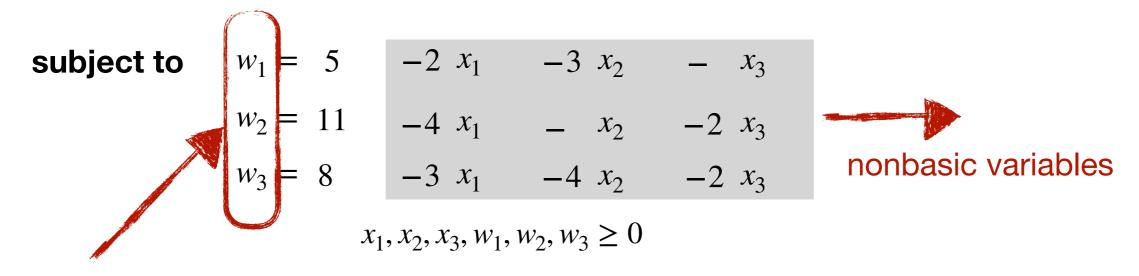
Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$



Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Suggestions?

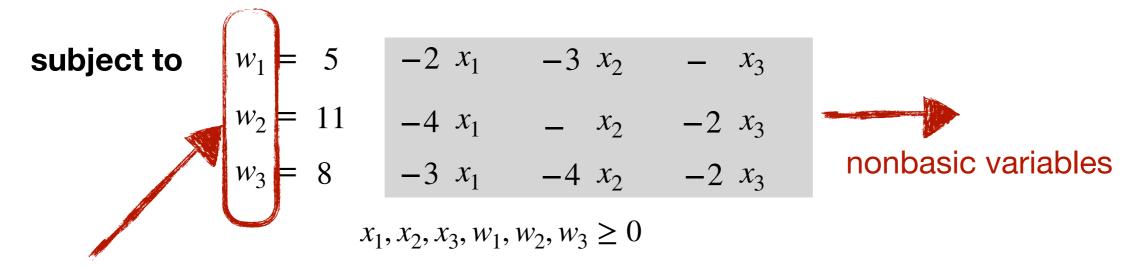
Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$



basic variables

$$x_1 = x_2 = x_3 = 0$$

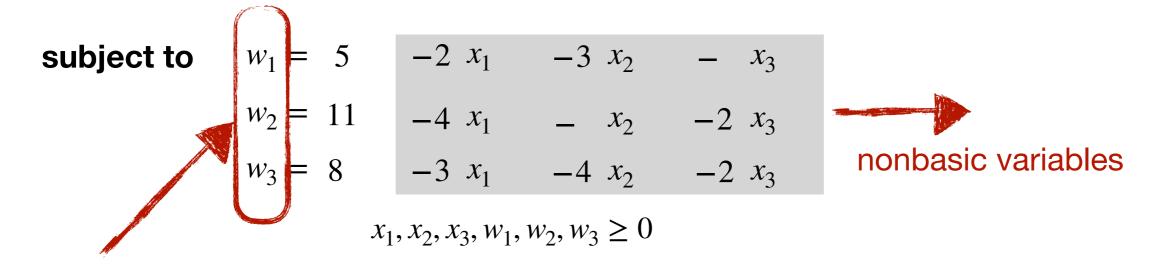
Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$



basic variables

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$



basic variables

A solution obtained by setting all the nonbasic variables to 0 is called a basic feasible solution.

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Step 2: Improving the solution

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to

$$w_1 = 5$$
 $-2 x_1$
 $-3 x_2$
 $-x_3$
 $w_2 = 11$
 $-4 x_1$
 $-x_2$
 $-2 x_3$
 $w_3 = 8$
 $-3 x_1$
 $-4 x_2$
 $-2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

 $x_1 = x_2 = x_3 = 0$ $w_1 = 5, w_2 = 11, w_3 = 8$

Step 2: Improving the solution

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 - x_3$
 $w_2 = 11 -4 x_1 - x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$
 $x_1 = x_2 = x_3 = 0$ $w_1 = 5, w_2 = 11, w_3 = 8$

We can increase the value of some nonbasic variable, e.g., x_1

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 - x_3$
 $w_2 = 11 -4 x_1 - x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$
 $x_1 = x_2 = x_3 = 0$ $w_1 = 5, w_2 = 11, w_3 = 8$

We can increase the value of some nonbasic variable, e.g., x_1

We should not violate any constraints though!

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to

$$w_1 = 5$$
 $-2 x_1 -3 x_2 - x_3$
 $w_2 = 11 -4 x_1 - x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$
 $x_1 = x_2 = x_3 = 0$
 $w_1 = 5, w_2 = 11, w_3 = 8$

We can increase the value of some nonbasic variable, e.g., x_1

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to	$w_1 = 5$	$-2 x_1$	$-3 x_2$	- <i>x</i> ₃
	$w_2 = 11$	$-4 x_1$	_ <i>x</i> ₂	$-2 x_3$
	$w_3 = 8$	$-3 x_1$	$-4 x_2$	$-2 x_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to	$w_1 = 5$	$-2 x_1$	$-3 x_2$	- <i>x</i> ₃
	$w_2 = 11$	$-4 x_1$	_ <i>x</i> ₂	$-2 x_3$
	$w_3 = 8$	$-3 x_1$	$-4 x_2$	$-2 x_3$
	X	$x_1, x_2, x_3, w_1,$	$w_2, w_3 \ge 0$	

For w_1 , x_1 can become as large as 5/2 = 30/12.

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to	$w_1 = 5$	$-2 x_1$	$-3 x_2$	- <i>x</i> ₃
	$w_2 = 11$	$-4 x_1$	_ <i>x</i> ₂	$-2 x_3$
	$w_3 = 8$	$-3 x_1$	$-4 x_2$	$-2 x_3$
	X	$x_1, x_2, x_3, w_1,$	$w_2, w_3 \ge 0$	

For w_1 , x_1 can become as large as 5/2 = 30/12. For w_2 , x_1 can become as large as 11/4 = 33/12.

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to	$w_1 = 5$	$-2 x_1$	$-3 x_2$	- <i>x</i> ₃
	$w_2 = 11$	$-4 x_1$	<u> </u>	$-2 x_3$
	$w_3 = 8$	$-3 x_1$	$-4 x_2$	$-2 x_3$
	X	$x_1, x_2, x_3, w_1,$	$w_2, w_3 \ge 0$	

For w_1 , x_1 can become as large as 5/2 = 30/12. For w_2 , x_1 can become as large as 11/4 = 33/12. For w_3 , x_1 can become as large as 32/12.

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to

$$w_1 = 5$$
 $-2 x_1 -3 x_2 - x_3$
 $w_2 = 11$ $-4 x_1 - x_2 -2 x_3$
 $w_3 = 8$ $-3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

 $x_1 = 5/2, \ x_2 = x_3 = 0$

For w_1 , x_1 can become as large as 5/2 = 30/12. For w_2 , x_1 can become as large as 11/4 = 33/12. For w_3 , x_1 can become as large as 32/12.

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to

$$w_1 = 5$$
 $-2 x_1 -3 x_2 - x_3$
 $w_2 = 11 -4 x_1 - x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2, \ x_2 = x_3 = 0$$
 $w_1 = 0, \ w_2 = 1, \ w_3 = 1/2$

For w_1 , x_1 can become as large as 5/2 = 30/12. For w_2 , x_1 can become as large as 11/4 = 33/12. For w_3 , x_1 can become as large as 32/12.

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to
$$w_1 = 5$$
 $-2 x_1$ $-3 x_2$ $-x_3$ $w_2 = 11$ $-4 x_1$ $-x_2$ $-2 x_3$ $w_3 = 8$ $-3 x_1$ $-4 x_2$ $-2 x_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

 $x_1 = 5/2, \ x_2 = x_3 = 0$ $w_1 = 0, \ w_2 = 1, \ w_3 = 1/2$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to

$$w_1 = 5$$
 $-2 x_1 -3 x_2 - x_3$
 $w_2 = 11$ $-4 x_1 - x_2 -2 x_3$
 $w_3 = 8$ $-3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2, \ x_2 = x_3 = 0$$
 $w_1 = 0, \ w_2 = 1, \ w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

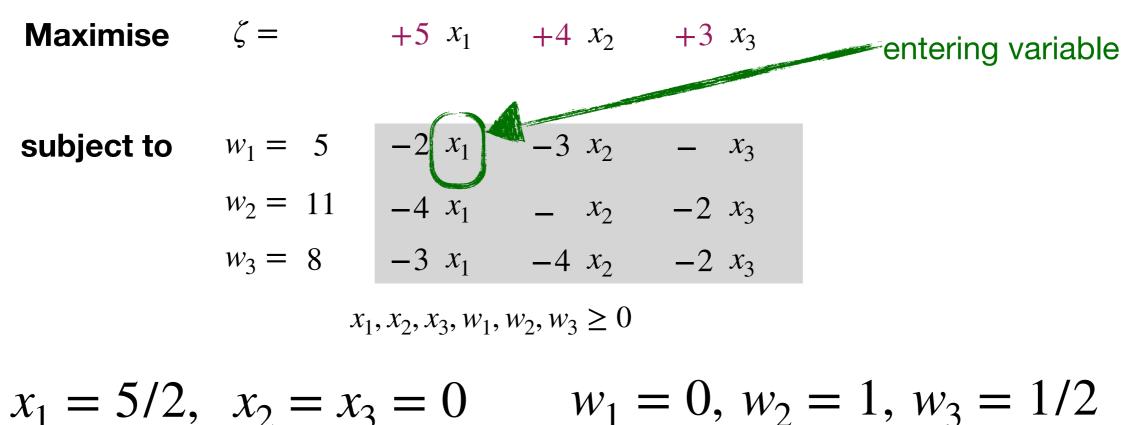
Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to

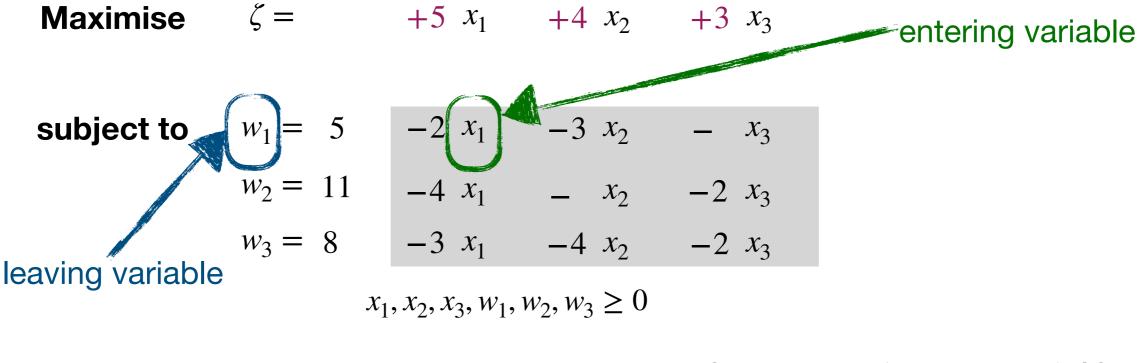
$$w_1 = 5$$
 $-2 x_1 -3 x_2 - x_3$
 $w_2 = 11$ $-4 x_1 - x_2 -2 x_3$
 $w_3 = 8$ $-3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2, \ x_2 = x_3 = 0$$
 $w_1 = 0, \ w_2 = 1, \ w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

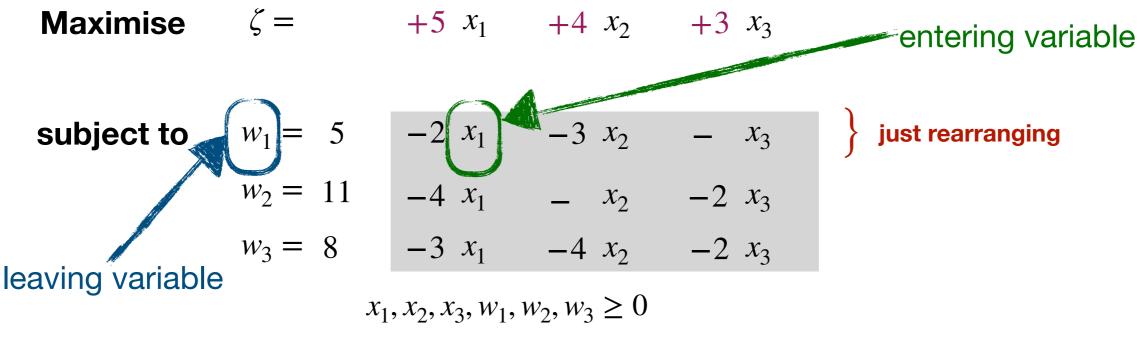


We need to rearrange the inequalities, so that x_1 now only appears on the left.



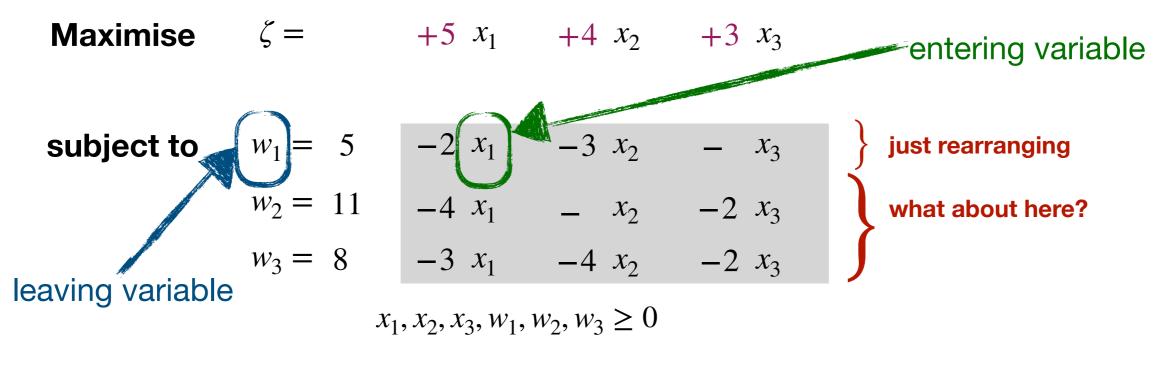
$$x_1 = 5/2, \ x_2 = x_3 = 0$$
 $w_1 = 0, \ w_2 = 1, \ w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.



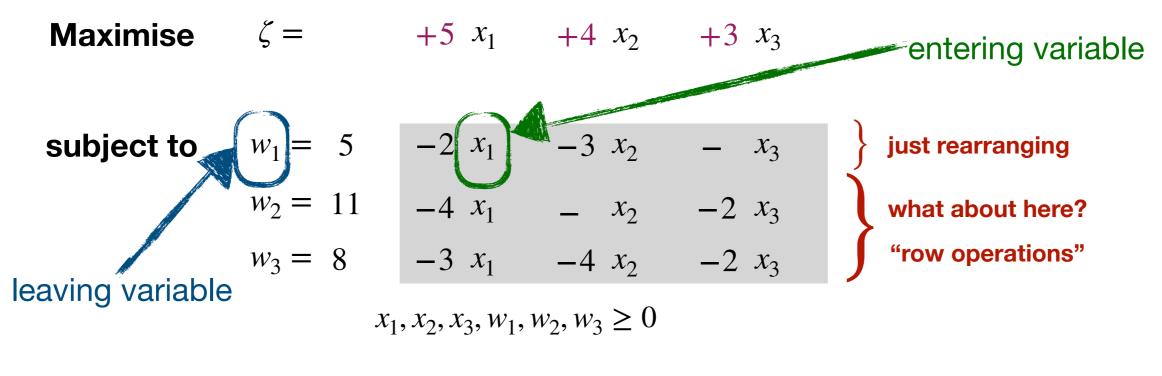
$$x_1 = 5/2, \ x_2 = x_3 = 0$$
 $w_1 = 0, \ w_2 = 1, \ w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.



$$x_1 = 5/2, \ x_2 = x_3 = 0$$
 $w_1 = 0, \ w_2 = 1, \ w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.



$$x_1 = 5/2, \ x_2 = x_3 = 0$$
 $w_1 = 0, \ w_2 = 1, \ w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to

$-x_3$ } just rearran	x_3	_	$-3 x_2$	$-2 x_1$	$w_1 = 5$)
$-2 x_3$ what about	<i>x</i> ₃	-2	_ <i>x</i> ₂	$-4 x_1$	$w_2 = 11$	
$-2 x_3$ frow opera	<i>x</i> ₃	-2	$-4 x_2$	$-3 x_1$	$w_3 = 8$	

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to	$w_1 = 5$	$-2 x_1$	$-3 x_2$	- <i>x</i> ₃	} just rearranging
	$w_2 = 11$	$-4 x_1$	<u> </u>	$-2 x_3$	
	$w_3 = 8$	$-3 x_1$	$-4 x_2$	$-2 x_3$	f "row operations"
	x_1	$x_{2}, x_{3}, w_{1},$	$w_2, w_3 \ge 0$		

Notice that $w_2 - 2w_1 = 11 - 4x_1 - x_2 - 2x_3 - 10 + 4x_1 + 6x_2 + 2x_3$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 - x_3$
 $w_2 = 11$ $-4 x_1 - x_2 -2 x_3$
 $w_3 = 8$ $-3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$
just rearranging
what about here?
"row operations"

Notice that $w_2 - 2w_1 = 11 - 4x_1 - x_2 - 2x_3 - 10 + 4x_1 + 6x_2 + 2x_3$

$$\Rightarrow w_2 = 1 + 2w_1 + 5x_2$$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to	$w_1 = 5$	$-2 x_1$	$-3 x_2$	– <i>x</i> ₃	} just rearranging
	$w_2 = 11$	$-4 x_1$	<u> </u>	$-2 x_3$	
	$w_3 = 8$	$-3 x_1$	$-4 x_2$	$-2 x_3$	f "row operations"
	x_1	$, x_2, x_3, w_1,$	$w_2, w_3 \ge 0$		

Notice that $w_2 - 2w_1 = 11 - 4x_1 - x_2 - 2x_3 - 10 + 4x_1 + 6x_2 + 2x_3$

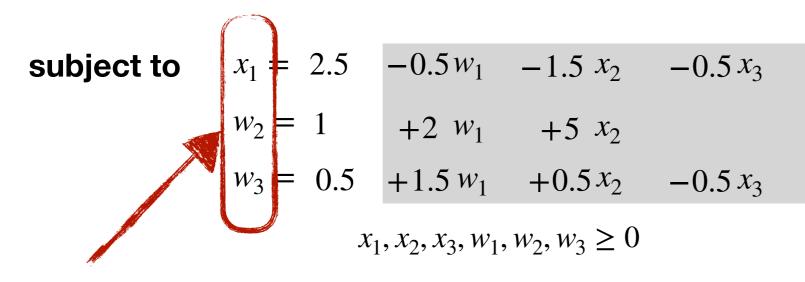
 $\Rightarrow w_2 = 1 + 2w_1 + 5x_2$ x_1 has been eliminated

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

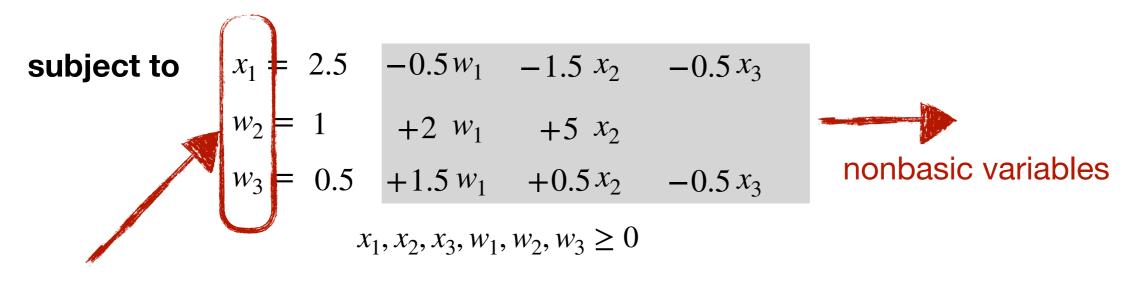
subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

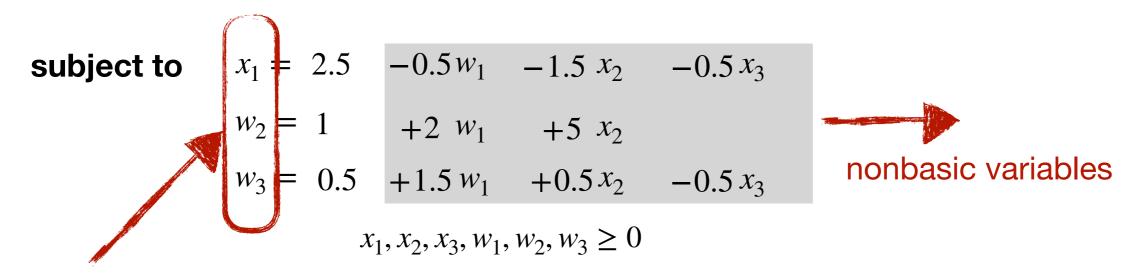
Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$



Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

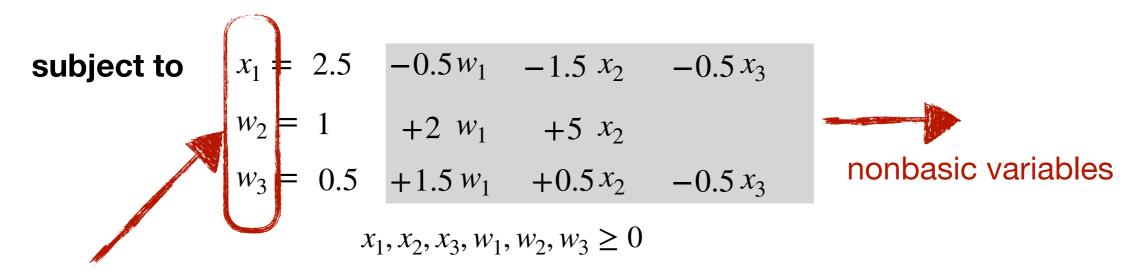


Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

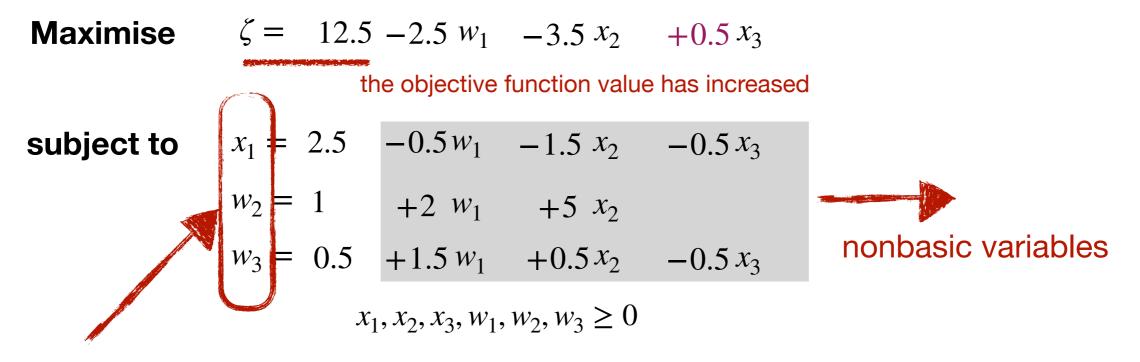


$$w_1 = 0, x_2 = 0 x_3 = 0$$

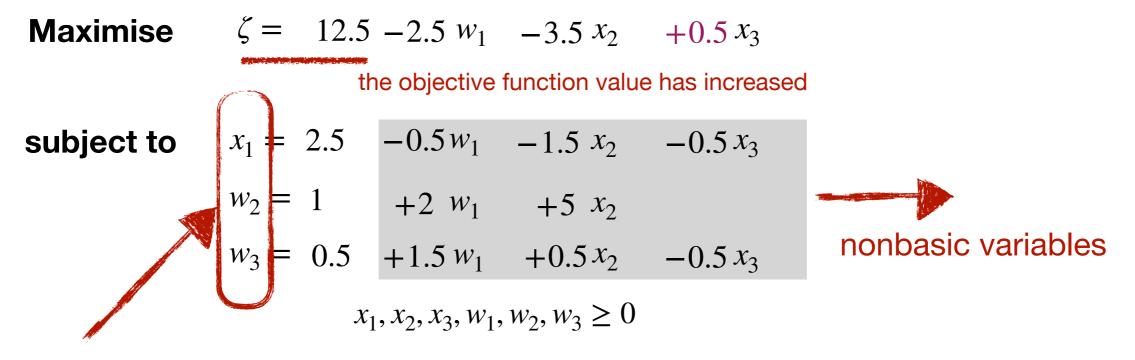
Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$



$$w_1 = 0, x_2 = 0 x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$



$$w_1 = 0, x_2 = 0 x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$



basic variables

$$w_1 = 0, x_2 = 0 x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Which variable should we try to increase next?

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5. For w_2 , x_3 can become as large as ∞ .

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

 $x_3 = 1, \ w_1 = x_2 = 0$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_3 = 1, w_1 = x_2 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 0$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$ entering variable $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_3 = 1, w_1 = x_2 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 0$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1 - 1.5x_2 - 0.5x_3$ $w_2 = 1$ $+2w_1 + 5x_2$ entering variable $w_3 = 0.5$ $+1.5w_1 + 0.5x_2 - 0.5x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

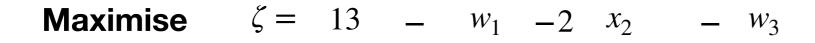
$$x_3 = 1, \ w_1 = x_2 = 0$$
 $x_1 = 2, \ w_2 = 1, \ w_3 = 0$

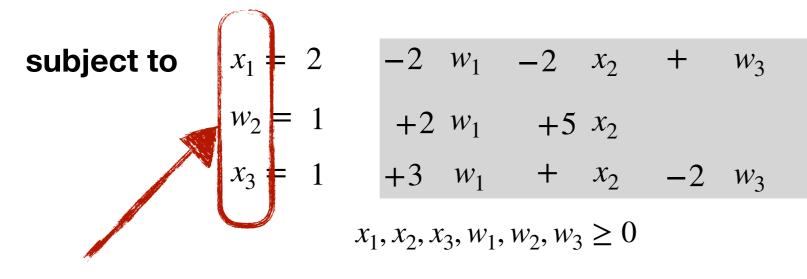
Maximise
$$\zeta = 13 - w_1 - 2 x_2 - w_3$$

subject to

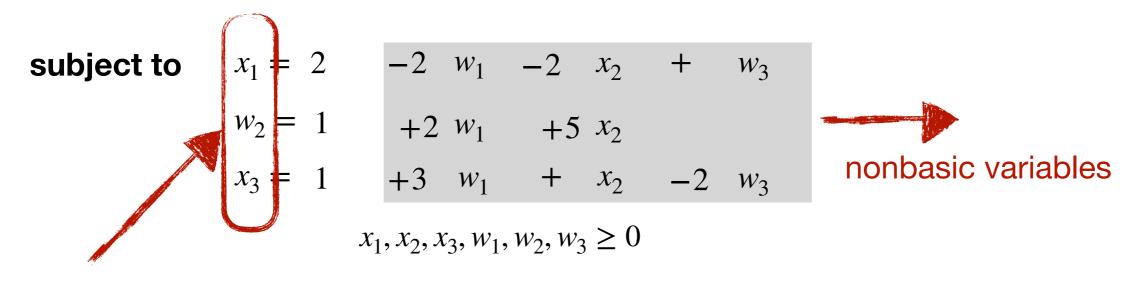
$x_1 = 2$	$-2 w_1$	$-2 x_2$	$+ w_3$
$w_2 = 1$	$+2 w_1$	$+5 x_2$	
$x_3 = 1$	+3 w ₁	+ x_2	$-2 w_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

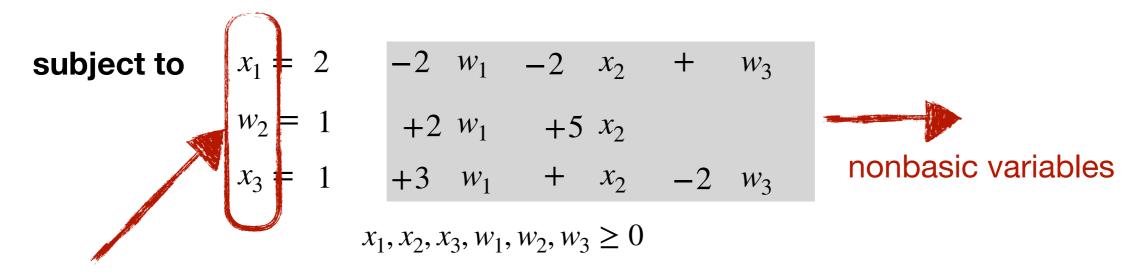




Maximise $\zeta = 13 - w_1 - 2 x_2 - w_3$

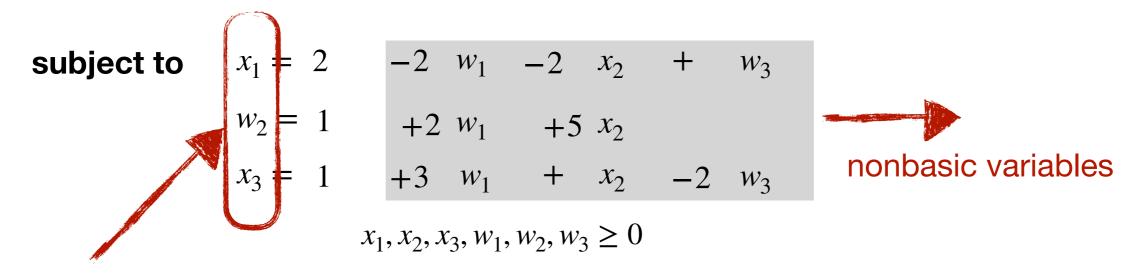


Maximise $\zeta = 13 - w_1 - 2 x_2 - w_3$



$$w_1 = 0, x_2 = 0 w_3 = 0$$

Maximise $\zeta = 13 - w_1 - 2 x_2 - w_3$



$$w_1 = 0, x_2 = 0 w_3 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 1$

Maximise
$$\zeta = 13 - w_1 - 2 x_2 - w_3$$

the objective function value has increased
subject to $x_1 = 2$ $-2 w_1 - 2 x_2 + w_3$
 $w_2 = 1$ $+2 w_1 + 5 x_2$
 $x_3 = 1$ $+3 w_1 + x_2 - 2 w_3$ nonbasic variables
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = 0, x_2 = 0 w_3 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 1$

Maximise
$$\zeta = 13 - w_1 - 2 x_2 - w_3$$

the objective function value has increased
subject to $x_1 = 2$ $-2 w_1 - 2 x_2 + w_3$
 $w_2 = 1$ $+2 w_1 + 5 x_2$
 $x_3 = 1$ $+3 w_1 + x_2 - 2 w_3$ nonbasic variables
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

basic variables

$$w_1 = 0, x_2 = 0 w_3 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 1$

Which variable should we try to increase next?

Maximise
$$\zeta = 13 - w_1 - 2 x_2 - w_3$$

the objective function value has increased
subject to $x_1 = 2$ $-2 w_1 - 2 x_2 + w_3$
 $w_2 = 1$ $+2 w_1 + 5 x_2$
 $x_3 = 1$ $+3 w_1 + x_2 - 2 w_3$ nonbasic variables
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

basic variables

$$w_1 = 0, x_2 = 0 w_3 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 1$

Which variable should we try to increase next? We have computed an optimal solution!

1. Introduce slack variables $x_{n+1}, x_{n+2}, \ldots, x_m$ and ζ .

1. Introduce slack variables $x_{n+1}, x_{n+2}, \dots, x_m$ and ζ .

2. Write the original dictionary.

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i / \hat{a}_{ik}$

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i / \hat{a}_{ik}$

Let's do it again, "mechanically"

Maximise $5x_1 + 4x_2 + 3x_3$

subject to $2x_1 + 3x_2 + x_3 \le 5$ $4x_1 + x_2 + 2x + 3 \le 11$ $3x_1 + 4x_2 + 2x_3 \le 8$ $x_1, x_2, x_3 \ge 0$

1. Introduce slack variables $x_{n+1}, x_{n+2}, \dots, x_m$ and ζ .

Maximise $\zeta = 5x_1 + 4x_2 + 3x_3$

subject to $w_{1} = 5 - 2x_{1} + 3x_{2} + x_{3}$ $w_{2} = 11 - 4x_{1} + x_{2} + 2x + 3$ $w_{3} = 8 - 3x_{1} + 4x_{2} + 2x_{3}$ $x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \ge 0$

2. Write the original dictionary.

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$ subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$ subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$ subject to $w_1 = 5 -2 x_1 -3 x_2 - x_3$ $w_2 = 11 -4 x_1 - x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

 $x_1 = x_2 = x_3 = 0$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$ subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

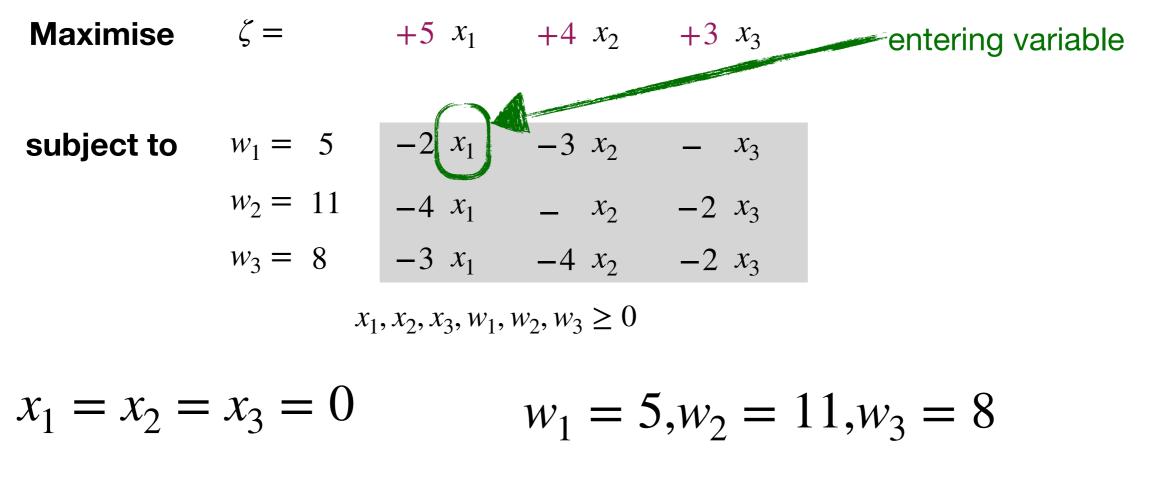
$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$ subject to $w_1 = 5 -2 x_1 -3 x_2 - x_3$ $w_2 = 11 -4 x_1 - x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

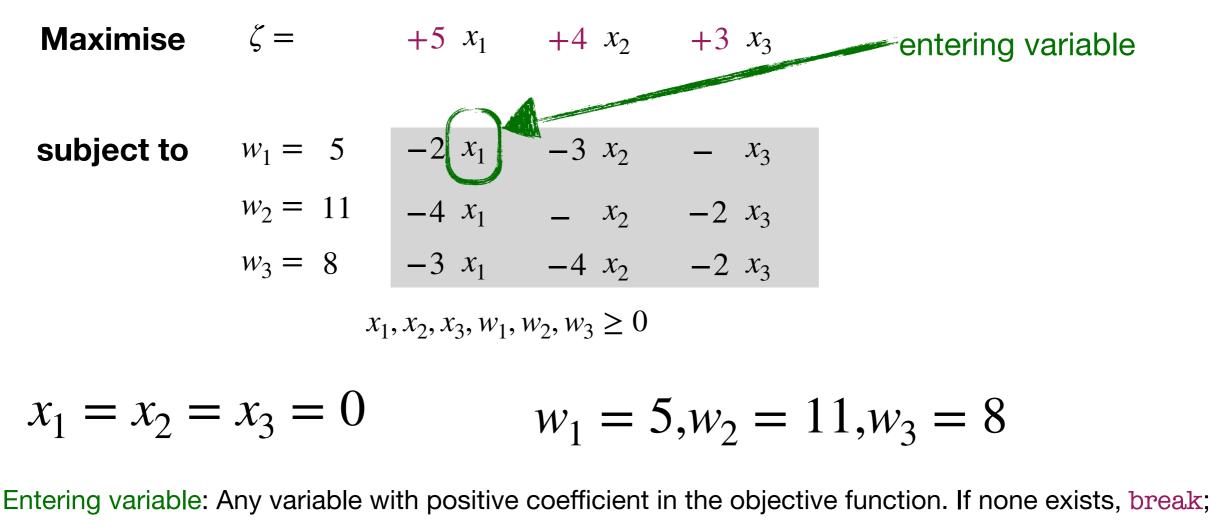
$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$ subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$ $x_1 = x_2 = x_3 = 0$ $w_1 = 5, w_2 = 11, w_3 = 8$

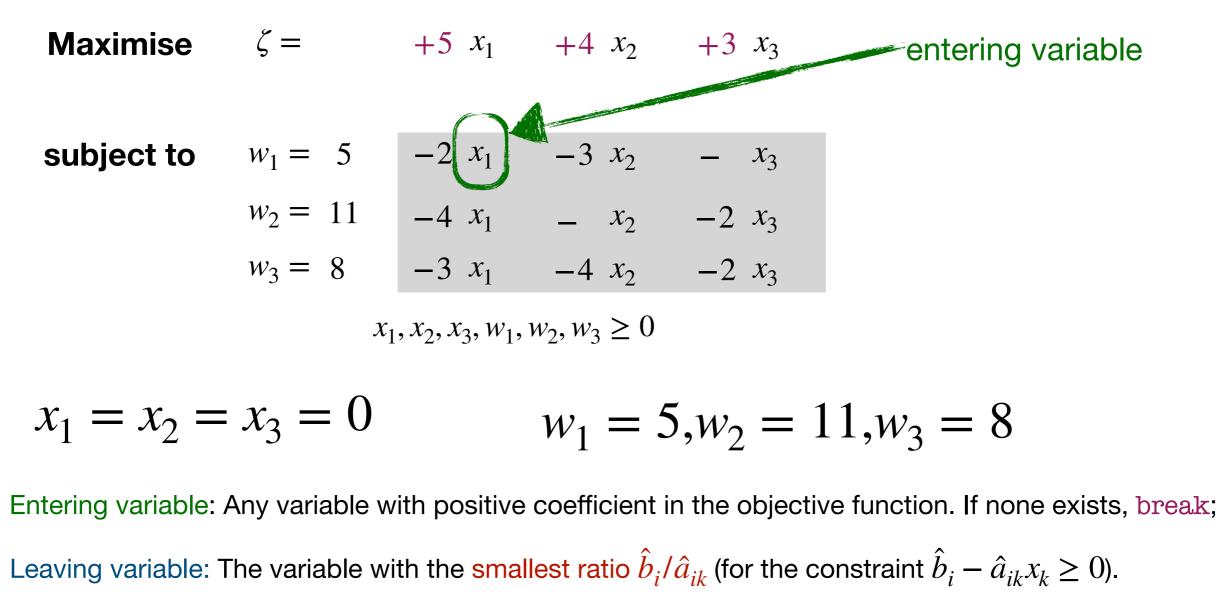
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;



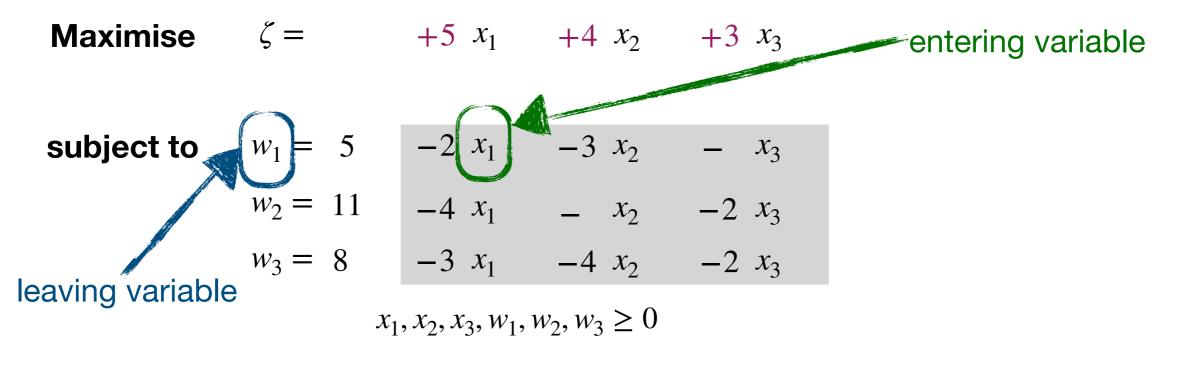
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;



Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).



 $5/2 \text{ vs } 11/4 \text{ vs } 8/3 \Rightarrow w_1$



$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break; Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$). $5/2 \text{ vs } 11/4 \text{ vs } 8/3 \Rightarrow w_1$

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i / \hat{a}_{ik}$

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to

$$w_{1} = 5 -2 x_{1} -3 x_{2} -x_{3}$$

$$w_{2} = 11 -4 x_{1} -x_{2} -2 x_{3}$$

$$w_{3} = 8 -3 x_{1} -4 x_{2} -2 x_{3}$$

$$x_1 = 2.5, x_2 = 0, x_3 = 0$$

6. Compute the new dictionary making sure x_k only appears on the left.

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to

$$x_{1} = 2.5 -0.5w_{1} -1.5x_{2} -0.5x_{3}$$

$$w_{2} = 1 +2w_{1} +5x_{2}$$

$$w_{3} = 0.5 +1.5w_{1} +0.5x_{2} -0.5x_{3}$$

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i / \hat{a}_{ik}$

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i / \hat{a}_{ik}$

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i / \hat{a}_{ik}$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to

$$x_{1} = 2.5 -0.5w_{1} -1.5x_{2} -0.5x_{3}$$

$$w_{2} = 1 +2w_{1} +5x_{2}$$

$$w_{3} = 0.5 +1.5w_{1} +0.5x_{2} -0.5x_{3}$$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$

$$w_1 = x_2 = x_3 = 0$$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

 $w_1 = x_2 = x_3 = 0$ $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

 $w_1 = x_2 = x_3 = 0$ $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

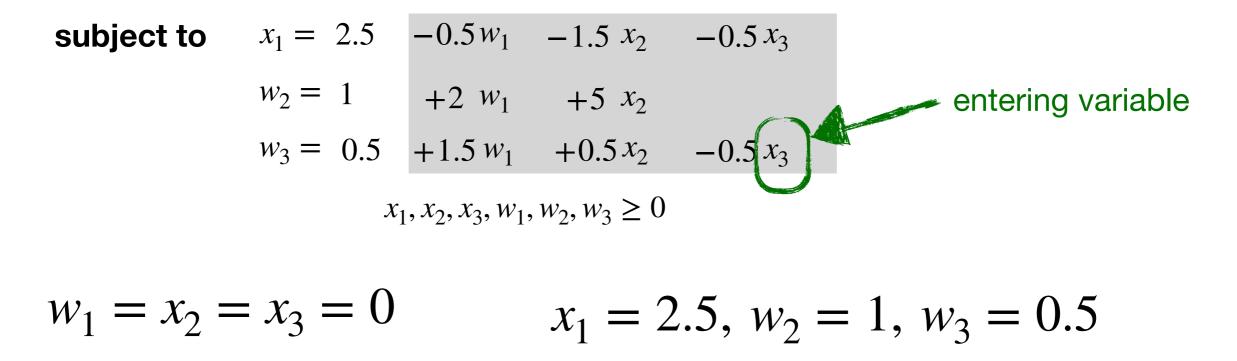
Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to $x_1 = 2.5$ $-0.5w_1$ $-1.5x_2$ $-0.5x_3$ $w_2 = 1$ $+2w_1$ $+5x_2$ $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$



Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ $-1.5x_2$ $-0.5x_3$
 $w_2 = 1$ $+2w_1$ $+5x_2$
 $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$ entering variable
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break; Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ $-1.5x_2$ $-0.5x_3$
 $w_2 = 1$ $+2w_1$ $+5x_2$
 $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break; Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$). $2.5/0.5 \text{ vs} \propto \text{vs} 0.5/0.5 \Rightarrow w_3$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ $-1.5x_2$ $-0.5x_3$
 $w_2 = 1$ $+2w_1$ $+5x_2$ entering variable
leaving variable $w_3 = 0.5$ $+1.5w_1$ $+0.5x_2$ $-0.5x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break; Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$). $2.5/0.5 \text{ vs} \propto \text{vs} 0.5/0.5 \Rightarrow w_3$

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i / \hat{a}_{ik}$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

subject to

$$x_{1} = 2.5 -0.5w_{1} -1.5x_{2} -0.5x_{3}$$

$$w_{2} = 1 +2w_{1} +5x_{2}$$

$$w_{3} = 0.5 +1.5w_{1} +0.5x_{2} -0.5x_{3}$$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 2.5, x_2 = 0, x_3 = 1$$

6. Compute the new dictionary making sure x_k only appears on the left.

Maximise $\zeta = 13 - w_1 - 2 x_2 - w_3$ subject to $x_1 = 2 -2 w_1 - 2 x_2 + w_3$ $w_2 = 1 +2 w_1 +5 x_2$ $x_3 = 1 +3 w_1 + x_2 - 2 w_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

Maximise $\zeta = 13 - w_1 - 2 x_2 - w_3$ subject to $x_1 = 2 -2 w_1 - 2 x_2 + w_3$ $w_2 = 1 +2 w_1 +5 x_2$ $x_3 = 1 +3 w_1 + x_2 - 2 w_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to ().

Maximise $\zeta = 13 - w_1 - 2 x_2 - w_3$ subject to $x_1 = 2 -2 w_1 - 2 x_2 + w_3$ $w_2 = 1 +2 w_1 +5 x_2$ $x_3 = 1 +3 w_1 + x_2 -2 w_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

 $w_1 = x_2 = w_3 = 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

Maximise $\zeta = 13 - w_1 - 2 x_2 - w_3$ subject to $x_1 = 2 -2 w_1 - 2 x_2 + w_3$ $w_2 = 1 +2 w_1 +5 x_2$ $x_3 = 1 +3 w_1 + x_2 - 2 w_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = w_3 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 1$

The Simplex Method

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i / \hat{a}_{ik}$

6. Compute the new dictionary making sure x_k only appears on the left.

The Simplex Method

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i / \hat{a}_{ik}$

6. Compute the new dictionary making sure x_k only appears on the left.

The Simplex Method

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i / \hat{a}_{ik}$

6. Compute the new dictionary making sure x_k only appears on the left.

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise $\zeta = 13 - w_1 - 2 x_2 - w_3$ subject to $x_1 = 2 -2 w_1 - 2 x_2 + w_3$ $w_2 = 1 +2 w_1 +5 x_2$ $x_3 = 1 +3 w_1 + x_2 - 2 w_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = w_3 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 1$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise $\zeta = 13 - w_1 - 2 x_2 - w_3$ subject to $x_1 = 2 -2 w_1 - 2 x_2 + w_3$ $w_2 = 1 + 2 w_1 + 5 x_2$ $x_3 = 1 + 3 w_1 + x_2 - 2 w_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = w_3 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 1$

We have computed an optimal solution!

Potential Problem

Potential Problem

Consider the following LP:

Potential Problem

Consider the following LP:

Maximise
$$-2x_1 - x_2$$

subject to

$$-x_1 + x_2 \le -1$$

$$-x_1 - 2x_2 \le -2$$

$$x_2 \le 1$$

$$x_1, x_2 \ge 0$$

Maximise $\zeta = -2 x_1 - x_2$

subject to

$+ x_1$	<u> </u>
+ <i>x</i> ₁	+2 x ₂
	_ <i>x</i> ₂

 $x_1, x_2, w_1, w_2, w_3 \ge 0$

Maximise $\zeta = -2 x_1 - x_2$

subject to

$$w_{1} = -1 + x_{1} - x_{2}$$

$$w_{2} = -2 + x_{1} + 2 x_{2}$$

$$w_{3} = 1 - x_{2}$$

 $x_1, x_2, w_1, w_2, w_3 \ge 0$

Maximise $\zeta = -2 x_1 - x_2$

subject to

$$w_{1} = -1 + x_{1} - x_{2}$$

$$w_{2} = -2 + x_{1} + 2 x_{2}$$

$$w_{3} = 1 - x_{2}$$

 $x_1, x_2, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$

Maximise $\zeta = -2 x_1 - x_2$

subject to

$$w_{1} = -1 + x_{1} - x_{2}$$

$$w_{2} = -2 + x_{1} + 2 x_{2}$$

$$w_{3} = 1 - x_{2}$$

 $x_1, x_2, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $w_1 = -1, w_2 = -2, w_3 = 1$

Maximise $\zeta = -2 x_1 - x_2$

1

subject to

$$w_{1} = -1 + x_{1} - x_{2}$$

$$w_{2} = -2 + x_{1} + 2 x_{2}$$

$$w_{3} = 1 - x_{2}$$

 $x_1, x_2, w_1, w_2, w_3 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = x_2 = x_3 = 0$$
 $w_1 = -1, w_2 = -2, w_3 = 1$

The dictionary is inteasible!

Consider the following LP:

Maximise
$$-2x_1 - x_2$$

subject to

$$-x_1 + x_2 \le -1$$

$$-x_1 - 2x_2 \le -2$$

$$x_2 \le 1$$

$$x_1, x_2 \ge 0$$

Consider the following alternative LP:

Maximise $-x_0$

subject to

$$-x_1 + x_2 - x_0 \le -1$$

 $-x_1 - 2x_2 - x_0 \le -2$
 $x_2 - x_0 \le 1$
 $x_1, x_2, x_0 \ge 0$

subject to

$$-x_1 + x_2 \le -1$$

$$-x_1 - 2x_2 \le -2$$

$$x_2 \le 1$$

$$x_1, x_2 \ge 0$$

 Maximise
 $-x_0$

 subject to
 $-x_1 + x_2 - x_0 \le -1$
 $-x_1 - 2x_2 - x_0 \le -2$
 $x_2 - x_0 \le 1$
 $x_1, x_2, x_0 \ge 0$

subject to
$$-x_1 + x_2 \le -1$$

 $-x_1 - 2x_2 \le -2$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$ The first LP is feasible if any only if
the second LP has an optimal solution
of value 0.Maximise $-x_0$
 $-x_1 + x_2 - x_0 \le -1$
 $-x_1 - 2x_2 - x_0 \le -2$

 $x_2 - x_0 \le 1$

 $x_1, x_2, x_0 \ge 0$

Consider the following alternative LP:

Maximise $-x_0$

subject to

$$-x_1 + x_2 - x_0 \le -1$$

 $-x_1 - 2x_2 - x_0 \le -2$
 $x_2 - x_0 \le 1$
 $x_1, x_2, x_0 \ge 0$

Maximise $\zeta = -x_0$

subject to

$w_1 = -1$	$+ x_1$	- <i>x</i> ₂	$+ x_0$
$w_2 = -2$	+ <i>x</i> ₁	$+2 x_2$	$+ x_0$
$w_3 = 1$		_ <i>x</i> ₂	$+ x_0$

 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

Maximise $\zeta = -x_0$

subject t

t to	$w_1 = -1$	$+ x_1$	$- x_2$	$+ x_0$
	$w_2 = -2$	+ <i>x</i> ₁	+2 x_2	$+ x_0$
	$w_3 = 1$		<i>_ x</i> ₂	$+ x_0$
	J	x_1, x_2, w_1, w_2	$x_2, w_3, x_0 \ge 0$	

Maximise $\zeta = -x_0$

subject t

t to	$w_1 = -1$	$+ x_1$	$- x_2$	$+ x_0$
	$w_2 = -2$	+ <i>x</i> ₁	$+2 x_2$	$+ x_0$
	$w_3 = 1$		- <i>x</i> ₂	$+ x_0$
	X	x_1, x_2, w_1, w_2	$w_{3}, w_{3}, x_{0} \ge 0$	

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Maximise $\zeta =$ $-x_0$

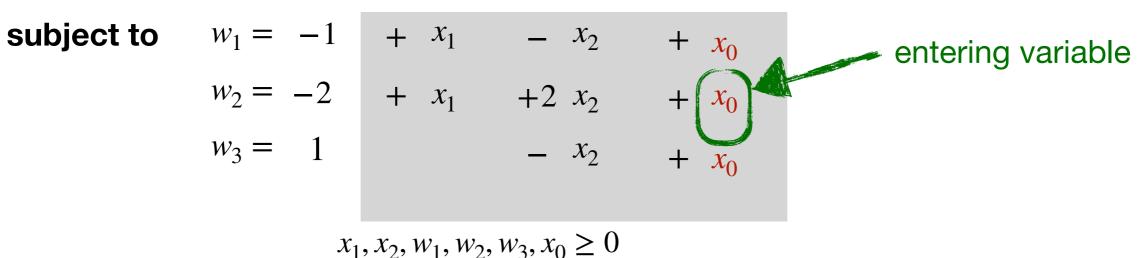
subject to $w_1 = -1 + x_1 - x_2 + x_0$ $w_2 = -2 + x_1 + 2 x_2 + x_0$ $w_3 = 1 - x_2 + x_0$ $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0

 $\zeta =$ Maximise $-x_0$

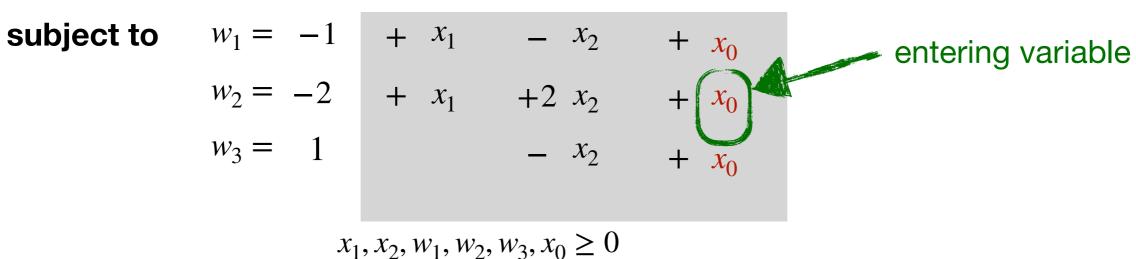


3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0

 $\zeta =$ Maximise $-x_0$



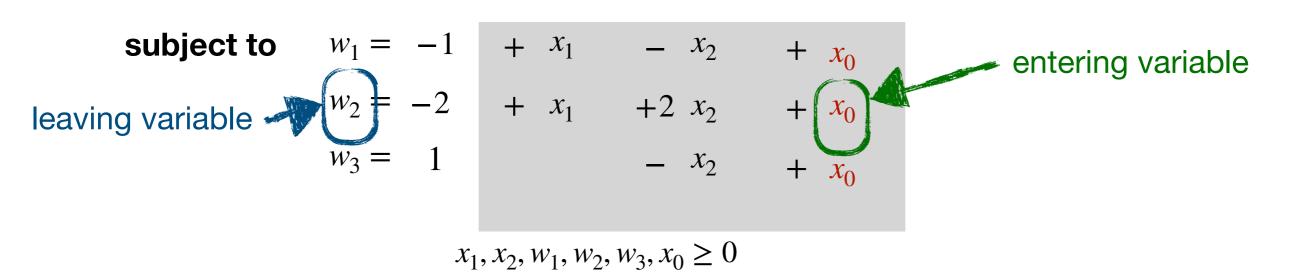
3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0

Leaving variable: the one that is "most infeasible"

Maximise
$$\zeta = -x_0$$



3. Find a basic feasible solution by setting the nonbasic variables to 0.

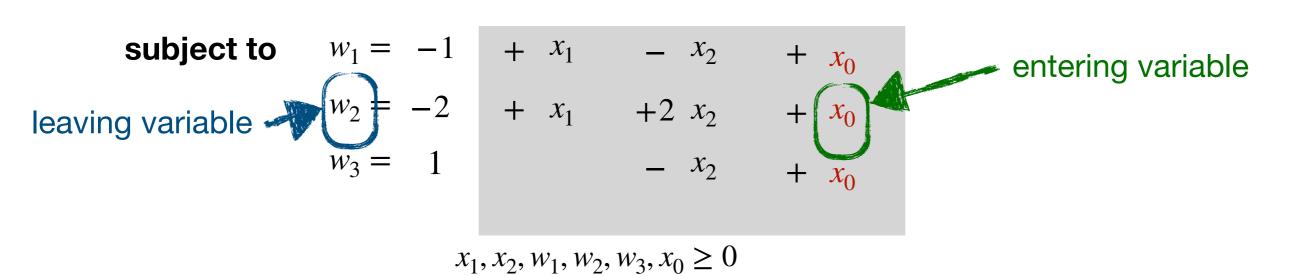
The dictionary is infeasible!

Entering variable: x_0

Leaving variable: the one that is "most infeasible"

Auxiliary problem dictionary

Maximise
$$\zeta = -x_0$$



3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0

Leaving variable: the one that is "most infeasible"

6. Compute the new dictionary making sure x_0 only appears on the left.

The new auxiliary problem dictionary

Maximise $\zeta = -2 + x_1 + 2 x_2 - w_2$

subject to $w_1 = 1$ $-3 x_2 + w_2$ $x_0 = 2 - x_1 -2 x_2 + w_2$ $w_3 = 3 - x_1 -3 x_2 + w_2$

 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

The new auxiliary problem dictionary

Maximise $\zeta = -2 + x_1 + 2 x_2 - w_2$

subject to	$w_1 =$	1		$-3 x_2$	$+ w_2$
	$x_0 =$	2	<i>_ x</i> ₁	$-2 x_2$	+ <i>w</i> ₂
	$w_3 =$	3	<i>– x</i> ₁	$-3 x_2$	+ w ₂

 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

The dictionary is feasible, we can apply the simplex method.

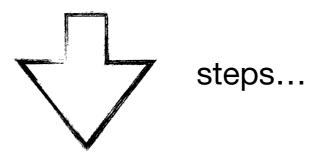
The new auxiliary problem dictionary

Maximise $\zeta = -2 + x_1 + 2 x_2 - w_2$

subject to $w_1 = 1$ $-3 x_2 + w_2$ $x_0 = 2 - x_1 -2 x_2 + w_2$ $w_3 = 3 - x_1 -3 x_2 + w_2$

 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

The dictionary is feasible, we can apply the simplex method.



The final auxiliary problem dictionary

Maximise $\zeta = -x_0$

subject to

$x_2 = 0.3$	33	$-0.33 w_1$	$+0.33 w_2$
$x_1 = 1.3$	$- x_0$	$+0.67 w_1$	$+0.33 w_2$
$w_3 = 2$	$+ x_0$	$+0.33 w_1$	$+0.33 w_2$

 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

The final auxiliary problem dictionary

Maximise $\zeta = -x_0$

subject to $x_2 = 0.33$ $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33$ $- x_0 + 0.67 w_1 + 0.33 w_2$

 $w_3 = 2 + x_0 + 0.33w_1 + 0.33w_2$

 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

Remove x_0 from the constraints and substitute the original objective function.

Maximise $\zeta = -2 x_1 - x_2$

subject to	$x_2 = 0.33$	$-0.33 w_1 + 0.33 w_2$
	$x_1 = 1.33$	$+0.67w_1 +0.33w_2$
	$w_3 = 2$	$+0.33w_1 + 0.33w_2$

 $x_1, x_2, w_1, w_2, w_3 \ge 0$

Maximise $\zeta = -2 x_1 - x_2$

subject to	$x_2 = 0.33$	$-0.33 w_1 + 0.33 w_2$
	$x_1 = 1.33$	$+0.67w_1 +0.33w_2$
	$w_3 = 2$	$+0.33w_1 +0.33w_2$
	$x_1, x_2,$	$w_1, w_2, w_3 \ge 0$

We should have only nonbasic variables in the objective function.

Easy Fix

Maximise $\zeta = -2 x_1 - x_2$

subject to

$w_1 = -1$	$+ x_1$	$- x_2$
$w_2 = -2$	+ <i>x</i> ₁	+2 x ₂
$w_3 = 1$		- <i>x</i> ₂

 $x_1, x_2, w_1, w_2, w_3 \ge 0$

Easy Fix

Maximise $\zeta = -2 x_1 - x_2$

1

subject to

$$w_{1} = -1 + x_{1} - x_{2}$$

$$w_{2} = -2 + x_{1} + 2 x_{2}$$

$$w_{3} = 1 - x_{2}$$

 $x_1, x_2, w_1, w_2, w_3 \ge 0$

We have
$$\zeta = -2x_1 - x_2 = -3 - w_1 - w_2$$

Maximise $\zeta = -3 w_1 - w_2$

subject to	$x_2 = 0.33$	$-0.33 w_1 + 0.33 w_2$
	$x_1 = 1.33$	$+0.67w_1 +0.33w_2$
	$w_3 = 2$	$+0.33w_1 + 0.33w_2$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise $\zeta = -3 w_1 - w_2$

subject to	$x_2 = 0.33$	$-0.33 w_1 + 0.33 w_2$
	$x_1 = 1.33$	$+0.67w_1 +0.33w_2$
	$w_3 = 2$	$+0.33w_1 + 0.33w_2$
	$x_1, x_2,$	$x_3, w_1, w_2, w_3 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

Maximise $\zeta = -3 w_1 - w_2$

subject to	$x_2 = 0.33$	$-0.33 w_1 + 0.33 w_2$
	$x_1 = 1.33$	$+0.67w_1 +0.33w_2$
	$w_3 = 2$	$+0.33w_1 +0.33w_2$
	x_1, x_2, \dots	$x_3, w_1, w_2, w_3 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$

Maximise $\zeta = -3 w_1 - w_2$

subject to $x_2 = 0.33$ $x_1 = 1.33$ $w_3 = 2$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$ $-0.33 w_1 + 0.33 w_2$ $+0.67 w_1 + 0.33 w_2$ $+0.33 w_1 + 0.33 w_2$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$
 $x_1 = 1.33, x_2 = 0.33, w_3 = 2$

Maximise $\zeta = -3 w_1 - w_2$

subject to $x_2 = 0.33$ $x_1 = 1.33$ $w_3 = 2$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$ $-0.33 w_1 + 0.33 w_2$ $+0.67 w_1 + 0.33 w_2$ $+0.33 w_1 + 0.33 w_2$

1

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$
 $x_1 = 1.33, x_2 = 0.33, w_3 = 2$

Maximise $\zeta = -3 w_1 - w_2$

subject to $x_2 = 0.33$ $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$ $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

We have found an optimal solution!

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$
 $x_1 = 1.33, x_2 = 0.33, w_3 = 2$

Maximise $\zeta =$ $-3 w_1$ $- w_2$

 $x_2 = 0.33$

 $x_1 = 1.33$

2

 $w_3 =$

subject to

 $-0.33 w_1 + 0.33 w_2$ We have found an optimal solution! $+0.67 w_1 +0.33 w_2$ We were lucky: we can $+0.33w_1 + 0.33w_2$ only expect to find a feasible solution.

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$
 $x_1 = 1.33, x_2 = 0.33, w_3 = 2$

Maximise $\zeta = 5 + x_3 - x_1$ subject to $x_2 = 5 + 2 x_3 - 3 x_1$ $x_4 = 7 - 4 x_1$ $x_5 = x_1$

 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Maximise $\zeta = 5 + x_3 - x_1$ subject to $x_2 = 5 + 2 x_3 - 3 x_1$ $x_4 = 7 - 4 x_1$ $x_5 = x_1, x_2, x_3, x_4, x_5 \ge 0$

Maximise $\zeta = 5 + x_3 - x_1$ subject to $x_2 = 5 + 2 x_3 - 3 x_1$ $x_4 = 7 - 4 x_1$ $x_5 = x_1$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break; Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

Maximise	$\zeta = 5$	$+ x_3 - x_1$	entering variable
subject to	$x_2 = 5$	$+2 x_3 -3 x_1$	
	$x_4 = 7$	$-4 x_1$	
	$x_5 =$	<i>x</i> ₁	
	X	$x_1, x_2, x_3, x_4, x_5 \ge 0$	

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break; Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i - \hat{a}_{ik}x_k \ge 0$).

Maximise	$\zeta = 5$	+ x_3 - x_1 entering variable
		$+2 x_3 -3 x_1$
	$x_4 = 7$	$-4 x_1$
	$x_5 =$	x_1

 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Maximise	$\zeta = 5$	+ (x ₃) -	- entering variable x_1
subject to	$x_2 = 5$	$+2 x_3 -3$	x_1
	$x_4 = 7$	-4 .	x_1
	$x_5 =$		x_1
	X	$x_1, x_2, x_3, x_4, x_5 \ge 0$	

We can increase the value of some nonbasic variable, here x_3

Maximise	$\zeta = 5$	+ x_3 - x_1 entering variable
subject to	$x_2 = 5$	$+2 x_3 -3 x_1$
	$x_4 = 7$	$-4 x_1$
	$x_5 =$	x_1
	x_{\pm}	$x_1, x_2, x_3, x_4, x_5 \ge 0$

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

Maximise	$\zeta = 5$	$+ x_3 - x_1$	entering variable				
subject to	$x_2 = 5$	$+2 x_3 -3 x_1$					
	$x_4 = 7$	$-4 x_1$					
	$x_5 =$	<i>x</i> ₁					
$x_1, x_2, x_3, x_4, x_5 \ge 0$							

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

Maximise	$\zeta = 5$	+ x_3 - x_1 entering variable					
subject to	$x_2 = 5$	$+2 x_3 -3 x_1$					
	$x_4 = 7$	$-4 x_1$					
	$x_5 =$	x_1					
$x_1, x_2, x_3, x_4, x_5 \ge 0$							

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

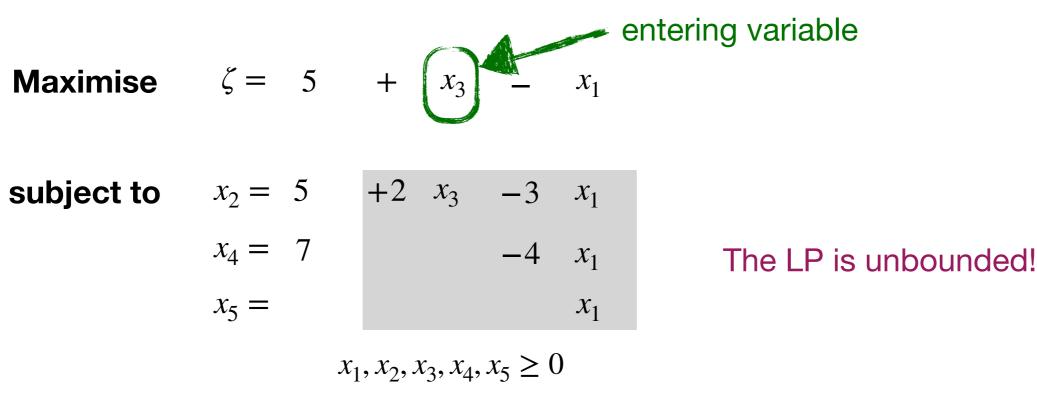
Maximise	$\zeta = 5$	+ x_3 - x_1 entering variable					
subject to	$x_2 = 5$	$+2 x_3 -3 x_1$					
	$x_4 = 7$	$-4 x_1$					
	$x_5 =$	x_1					
$x_1, x_2, x_3, x_4, x_5 \ge 0$							

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

This does not happen regardless of how much we increase x_3 .



We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

This does not happen regardless of how much we increase x_3 .

Maximise $\zeta = 3 -0.5 x_1 + 2 x_2 -1.5 w_1$

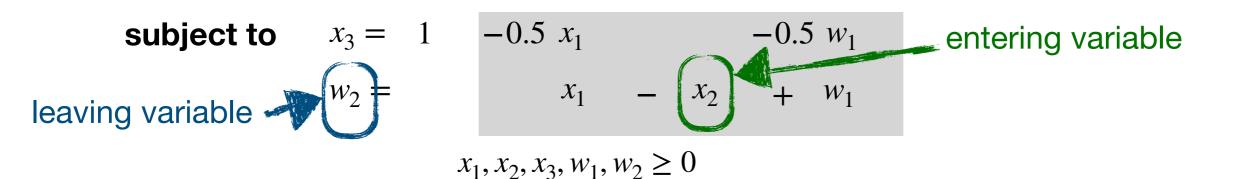
subject to	$x_3 = 1$	$-0.5 x_1$		$-0.5 w_1$
	$w_2 =$	<i>x</i> ₁	- <i>x</i> ₂	$+ w_1$

 $x_1, x_2, x_3, w_1, w_2 \ge 0$

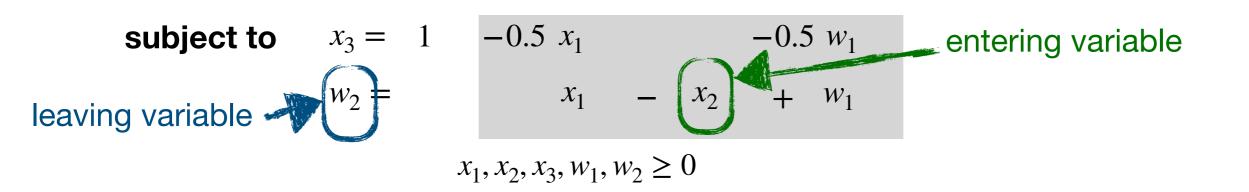
Maximise $\zeta = 3 - 0.5 x_1 + 2 x_2 - 1.5 w_1$

subject to $x_3 = 1$ $-0.5 x_1$ $-0.5 w_1$ entering variable $w_2 = x_1 - x_2 + w_1$ $x_1, x_2, x_3, w_1, w_2 \ge 0$

Maximise $\zeta = 3 - 0.5 x_1 + 2 x_2 - 1.5 w_1$



Maximise $\zeta = 3 -0.5 x_1 + 2 x_2 - 1.5 w_1$

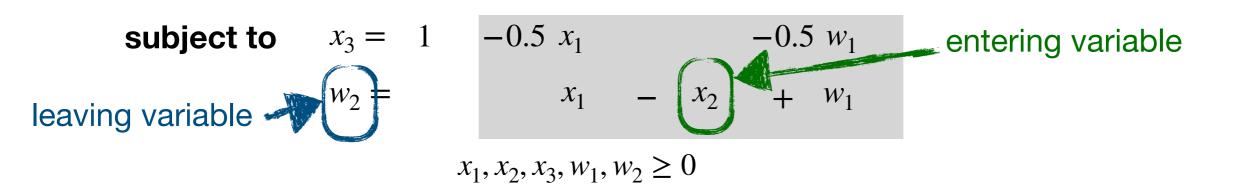


We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

Maximise $\zeta = 3 -0.5 x_1 + 2 x_2 - 1.5 w_1$



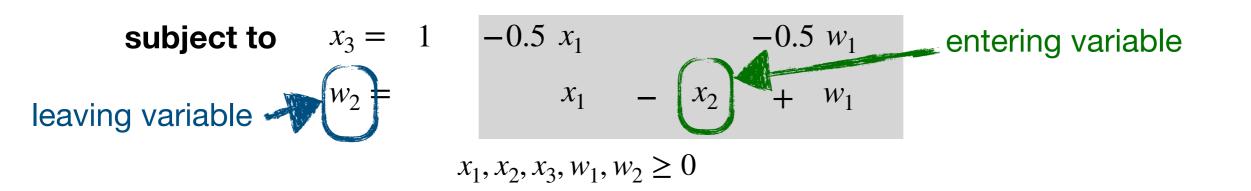
We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

 x_2 cannot be increased! Are we stuck?

Maximise $\zeta = 3 -0.5 x_1 + 2 x_2 - 1.5 w_1$



We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

*x*₂ cannot be increased! Are we stuck? **Degeneracy!** Next lecture

Historic Note

The Simplex Method was invented by George Dantzig in 1947.

It is still being used today in most of the LP-solvers.

Historic Note

The Simplex Method was invented by George Dantzig in 1947.

It is still being used today in most of the LP-solvers.

The origins of the simplex method go back to one of two famous unsolved problems in mathematical statistics proposed by Jerzy Neyman, which I mistakenly solved as a homework problem; it later

Dantzig. Origins of the Simplex Method. In A History of Scientific Computing, 1990.