
Algorithms and Data Structures
The Greedy Approach and Minimum Spanning Trees

The Greedy approach

• The goal is to come up with a global solution.

• The solution will be built up in small consecutive steps.

• For each step, the solution will be the best possible
myopically, according to some criterion.

Graph Theory Basics

Graph Definitions
Graph ,  
 Set of nodes (or vertices) , with | | =  
 Set of edges , with | | =  
 Undirected: edge = { , } 
 Directed: edge = (,) 

G = (V E)
V V n

E E m
e v w
e v w

Graph Definitions
Neighbours of : Set of nodes connected by an edge with  
Degree of a node: number of neighbours 
 Directed graphs: in-degree and out-degree 
Path: A sequence of (non-repeating) nodes with consecutive nodes being connected
by an edge. 
 Length: # nodes - 1 
Distance between and : length of the shortest path and , 
Graph diameter: The longest distance in the graph

v v

u v u v

Lines, cycles, trees and
cliques

Line Cycle

Clique Tree

Definitions
A spanning tree of a graph is a tree containing all the
nodes of .

G
G

Definitions

A connected component of a graph is subgraph such
that any two vertices are connected via some path.

G

Graph Representations

How do we represent a graph , ?

Adjacency Matrix

Adjacency List

G = (V E)

Adjacency Matrix A
The th node corresponds to the th row and the th column.

If there is an edge between and in the graph, then we have  
A[,] = 1, otherwise A[,] = 0.

For undirected graphs, necessarily A[,] = A[,]. For directed graphs, it could
be that A[,] ≠ A[,].

i i i

i j
i j i j

i j j i
i j j i

1 4

3

5

2

0 1 1 0 0
1 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0

Adjacency List L
• Nodes are arranged as a list, each node points to the

neighbours.

• For undirected graphs, the node points only in one direction.

• For directed graphs, the node points in two directions, for
in-degree and for out-degree

1 4

3

5

2

1

2

3

4

5

2 3
4 5

1
2

2

Adjacency List L
• Nodes are arranged as a list, each node points to the

neighbours.

• For undirected graphs, the node points only in one direction.

• For directed graphs, the node points in two directions, for
in-degree and for out-degree.

1 4

3

5

2

1

2

3

4

5

2

4

1
2

2

3

1 5

Adjacency Matrix vs
Adjacency List

Adjacency Matrix Adjacency List

Memory: O(n2) Memory: O(m+n)

Checking adjacency of and  
Time: O(1)

u v

Finding all adjacent nodes of  
Time: O(n)

u

Checking adjacency of and  
Time: O(min(deg(),deg())

u v
u v

Finding all adjacent nodes of  
Time: O(deg())

u
u

Graph Traversal (Search)

We would like to go over all the possible nodes of an
(undirected) graph.

There are different ways of doing that.

Two systematic ways:

Depth-First Search

Breadth-First Search

Graph Traversal (Search)

We would like to go over all the possible nodes of an
(undirected) graph.

There are different ways of doing that.

Two systematic ways:

Depth-First Search

Breadth-First Search

KT Chapter 3.2.

CLRS Chapter 20.2, 20.3

Minimum Spanning
Tree via Greedy

Application
We have a set of locations.

We want to build a communication network, joining all of
them.

We want to do it as cheaply as possible.

Every direct connection between two locations has a cost.

We want to have everything connected at the minimum
cost.

Minimum Spanning Tree

Consider a connected graph =(,), such that for every
edge = , of , there is an associated positive cost .

Goal: Find a subset of so that the graph =(,) is
connected and the total cost is minimised.

G V E
e {v w} E ce

T E G′￼ V T

∑
e∈T

ce

Claim: (,) is a treeV T

Claim: (,) is a treeV T
By definition, (,) is connected.V T

Claim: (,) is a treeV T
By definition, (,) is connected.V T

Suppose that it contained a cycle (i.e., it is not a tree).

Claim: (,) is a treeV T
By definition, (,) is connected.V T

Suppose that it contained a cycle (i.e., it is not a tree).

Let be an edge on that cycle.e

Claim: (,) is a treeV T
By definition, (,) is connected.V T

Suppose that it contained a cycle (i.e., it is not a tree).

Let be an edge on that cycle.e

Take (, -{ }).V T e

Claim: (,) is a treeV T
By definition, (,) is connected.V T

Suppose that it contained a cycle (i.e., it is not a tree).

Let be an edge on that cycle.e

Take (, -{ }).V T e

This is still connected.

Claim: (,) is a treeV T
By definition, (,) is connected.V T

Suppose that it contained a cycle (i.e., it is not a tree).

Let be an edge on that cycle.e

Take (, -{ }).V T e

This is still connected.

All paths that used can be rerouted through the other direction.e

Claim: (,) is a treeV T
By definition, (,) is connected.V T

Suppose that it contained a cycle (i.e., it is not a tree).

Let be an edge on that cycle.e

Take (, -{ }).V T e

This is still connected.

All paths that used can be rerouted through the other direction.e

(, -{ }) is a valid solution, and it is cheaper. Contradiction!V T e

Minimum Spanning Tree

Consider a connected graph =(,), such that for every
edge = , of , there is an associated positive cost .

Goal: Find a subset of so that the graph =(,) is
connected and the total cost is minimised.

G V E
e {v w} E ce

T E G′￼ V T

∑
e∈T

ce

Minimum Spanning Tree

Consider a connected graph =(,), such that for every
edge = , of , there is an associated positive cost .

Goal: Find a subset of so that the graph =(,) is
connected and the total cost is minimised.

G V E
e {v w} E ce

T E G′￼ V T

∑
e∈T

ce

=(,) is a spanning tree and the problem is called 
the Minimum Spanning Tree problem.

G′￼ V T

Greedy Approach #1

Greedy Approach #1
Start with an empty set of edges .T

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

The one with the minimum cost .ce

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

The one with the minimum cost .ce

We continue like this.

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

The one with the minimum cost .ce

We continue like this.

Do we always add the new edge to ?e T

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

The one with the minimum cost .ce

We continue like this.

Do we always add the new edge to ?e T

Only if we don’t introduce any cycles.

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Greedy Approach #1

Greedy Approach #1
Start with an empty set of edges .T

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

The one with the minimum cost .ce

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

The one with the minimum cost .ce

We continue like this.

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

The one with the minimum cost .ce

We continue like this.

Do we always add the new edge to ?e T

Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

The one with the minimum cost .ce

We continue like this.

Do we always add the new edge to ?e T

Only if we don’t introduce any cycles.

Start with an empty set of edges .

Add one edge to .

Which one?

The one with the minimum cost .

We continue like this.

Do we always add the new edge to ?

Only if we don’t introduce any cycles.

T

T

ce

e T

Kruskal’s Algorithm

Greedy Approach #2

Greedy Approach #2
Start with an empty set of edges .T

Greedy Approach #2
Start with an empty set of edges .T

Start with a node .s

Greedy Approach #2
Start with an empty set of edges .T

Start with a node .s

Add an edge = , to .e {s w} T

Greedy Approach #2
Start with an empty set of edges .T

Start with a node .s

Add an edge = , to .e {s w} T

Which one?

Greedy Approach #2
Start with an empty set of edges .T

Start with a node .s

Add an edge = , to .e {s w} T

Which one?

The one with the minimum cost .ce

Greedy Approach #2
Start with an empty set of edges .T

Start with a node .s

Add an edge = , to .e {s w} T

Which one?

The one with the minimum cost .ce

We continue like this.

Greedy Approach #2
Start with an empty set of edges .T

Start with a node .s

Add an edge = , to .e {s w} T

Which one?

The one with the minimum cost .ce

We continue like this.

We only consider edges to neighbours that are not in the spanning tree.

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

8

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

8

3

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

8

3

4

Greedy Approach #2
Start with an empty set of edges .

Start with a node .

Add an edge = , to .

Which one?

The one with the minimum cost .

We continue like this.

We only consider edges to neighbours that are not in the spanning tree.

T

s

e {s w} T

ce

Start with an empty set of edges .

Start with a node .

Add an edge = , to .

Which one?

The one with the minimum cost .

We continue like this.

We only consider edges to neighbours that are not in the spanning tree.

T

s

e {s w} T

ce

Prim’s Algorithm

Are these algorithms
optimal?

Are these algorithms
optimal?

In the example, they both produced the same spanning tree.

Are these algorithms
optimal?

In the example, they both produced the same spanning tree.

This was actually the minimum spanning tree.

Are these algorithms
optimal?

In the example, they both produced the same spanning tree.

This was actually the minimum spanning tree.

Do they always output the minimum spanning tree?

The cut property

The cut property
Assume that all edge costs are distinct.

The cut property
Assume that all edge costs are distinct.

Let be any subset of ,S V

The cut property
Assume that all edge costs are distinct.

Let be any subset of ,S V

but not empty.

The cut property
Assume that all edge costs are distinct.

Let be any subset of ,S V

but not empty.

but not .V

The cut property
Assume that all edge costs are distinct.

Let be any subset of ,S V

but not empty.

but not .V

Let = , be the minimum cost edge
between and - .

e {w v}
S V S

The cut property
Assume that all edge costs are distinct.

Let be any subset of ,S V

but not empty.

but not .V

Let = , be the minimum cost edge
between and - .

e {w v}
S V S

Then is contained in every minimum
spanning tree.

e

The cut property
Assume that all edge costs are distinct.

Let be any subset of ,S V

but not empty.

but not .V

Let = , be the minimum cost edge
between and - .

e {w v}
S V S

Then is contained in every minimum
spanning tree.

e

v w

The cut property
Then is contained in every minimum
spanning tree.

e

v w

The cut property
Then is contained in every minimum
spanning tree.

e

Assume that some spanning tree
does not contain .

GT
e

v w

The cut property
Then is contained in every minimum
spanning tree.

e

Assume that some spanning tree
does not contain .

GT
e

Since it is a spanning tree, it must
contain some other edge that crosses
from to - .

f
S V S

v w

The cut property
Then is contained in every minimum
spanning tree.

e

Assume that some spanning tree
does not contain .

GT
e

Since it is a spanning tree, it must
contain some other edge that crosses
from to - .

f
S V S

v w

The cut property
Then is contained in every minimum
spanning tree.

e

Assume that some spanning tree
does not contain .

GT
e

Since it is a spanning tree, it must
contain some other edge that crosses
from to - .

f
S V S

But ≤ , so - { } U { } is a
spanning tree of smaller cost.

ce cf GT f e

v w

The cut property
Then is contained in every minimum
spanning tree.

e

Assume that some spanning tree
does not contain .

GT
e

Since it is a spanning tree, it must
contain some other edge that crosses
from to - .

f
S V S

But ≤ , so - { } U { } is a
spanning tree of smaller cost.

ce cf GT f e

v w

No, - { } U { } might not be a spanning tree! GT f e

The cut property

v w

The cut property

We can’t simply select any edge.

v w

The cut property

We can’t simply select any edge.

We need to select an edge whiche′￼

v w

The cut property

We can’t simply select any edge.

We need to select an edge whiche′￼

• is more expensive than .e v w

The cut property

We can’t simply select any edge.

We need to select an edge whiche′￼

• is more expensive than .e

• still results in a spanning tree, if
used instead of .e

v w

The cut property

We can’t simply select any edge.

We need to select an edge whiche′￼

• is more expensive than .e

• still results in a spanning tree, if
used instead of .e

v w

The cut property

v’

v w

w’

The cut property
Let be a minimum spanning tree
which does not contain = , .

GT
e {v w} v’

v w

w’

The cut property
Let be a minimum spanning tree
which does not contain = , .

GT
e {v w}

Since is a spanning tree, there is path
from to .

GT
v w

v’

v w

w’

The cut property
Let be a minimum spanning tree
which does not contain = , .

GT
e {v w}

Since is a spanning tree, there is path
from to .

GT
v w

v’

v w

w’

The cut property
Let be a minimum spanning tree
which does not contain = , .

GT
e {v w}

Since is a spanning tree, there is path
from to .

GT
v w

Let be the first node encountered on
this path in - and let be the one
before it. Let = , .

w′￼

V S v′￼

e′￼ {v′￼w′￼}

v’

v w

w’

The cut property
Let be a minimum spanning tree
which does not contain = , .

GT
e {v w}

Since is a spanning tree, there is path
from to .

GT
v w

Let be the first node encountered on
this path in - and let be the one
before it. Let = , .

w′￼

V S v′￼

e′￼ {v′￼w′￼}

Consider = - { } U { }.G′￼T GT e′￼ e

v’

v w

w’

Kruskal’s algorithm is optimal

Kruskal’s algorithm is optimal
Consider any edge = , that Kruskal’s algorithm adds to the output on some
step.

e {u w}

Kruskal’s algorithm is optimal
Consider any edge = , that Kruskal’s algorithm adds to the output on some
step.

e {u w}

Let be the set of nodes reachable from just before is added to the output.S u e

Kruskal’s algorithm is optimal
Consider any edge = , that Kruskal’s algorithm adds to the output on some
step.

e {u w}

Let be the set of nodes reachable from just before is added to the output.S u e

It holds that is in and is in - . (Why?)u S w V S

Kruskal’s algorithm is optimal
Consider any edge = , that Kruskal’s algorithm adds to the output on some
step.

e {u w}

Let be the set of nodes reachable from just before is added to the output.S u e

It holds that is in and is in - . (Why?)u S w V S

Because otherwise adding would create a cycle.e

Kruskal’s algorithm is optimal
Consider any edge = , that Kruskal’s algorithm adds to the output on some
step.

e {u w}

Let be the set of nodes reachable from just before is added to the output.S u e

It holds that is in and is in - . (Why?)u S w V S

Because otherwise adding would create a cycle.e

The algorithm has not before encountered any other edge crossing and - . (Why?)S V S

Kruskal’s algorithm is optimal
Consider any edge = , that Kruskal’s algorithm adds to the output on some
step.

e {u w}

Let be the set of nodes reachable from just before is added to the output.S u e

It holds that is in and is in - . (Why?)u S w V S

Because otherwise adding would create a cycle.e

The algorithm has not before encountered any other edge crossing and - . (Why?)S V S

Such an edge would have been added to the output by the algorithm.

Kruskal’s algorithm is optimal
Consider any edge = , that Kruskal’s algorithm adds to the output on some
step.

e {u w}

Let be the set of nodes reachable from just before is added to the output.S u e

It holds that is in and is in - . (Why?)u S w V S

Because otherwise adding would create a cycle.e

The algorithm has not before encountered any other edge crossing and - . (Why?)S V S

Such an edge would have been added to the output by the algorithm.

The edge must be the cheapest edge crossing and - .e S V S

Kruskal’s algorithm is optimal
Consider any edge = , that Kruskal’s algorithm adds to the output on some
step.

e {u w}

Let be the set of nodes reachable from just before is added to the output.S u e

It holds that is in and is in - . (Why?)u S w V S

Because otherwise adding would create a cycle.e

The algorithm has not before encountered any other edge crossing and - . (Why?)S V S

Such an edge would have been added to the output by the algorithm.

The edge must be the cheapest edge crossing and - .e S V S

By the cut property, it belongs to every minimum spanning tree.

Is it feasible?
i.e., does it always produce a spanning tree?

v w

Is it feasible?
i.e., does it always produce a spanning tree?

The algorithm explicitly avoids cycles.

v w

Is it feasible?
i.e., does it always produce a spanning tree?

The algorithm explicitly avoids cycles.

Output is a forest.GT

v w

Is it feasible?
i.e., does it always produce a spanning tree?

The algorithm explicitly avoids cycles.

Output is a forest.GT

Is it a tree?

v w

Is it feasible?
i.e., does it always produce a spanning tree?

The algorithm explicitly avoids cycles.

Output is a forest.GT

Is it a tree?

Is it connected? v w

Is it feasible?
i.e., does it always produce a spanning tree?

The algorithm explicitly avoids cycles.

Output is a forest.GT

Is it a tree?

Is it connected?

 is connected.G

v w

Is it feasible?
i.e., does it always produce a spanning tree?

The algorithm explicitly avoids cycles.

Output is a forest.GT

Is it a tree?

Is it connected?

 is connected.G

Suppose by contradiction that was not
connected.

GT

v w

Is it feasible?
i.e., does it always produce a spanning tree?

The algorithm explicitly avoids cycles.

Output is a forest.GT

Is it a tree?

Is it connected?

 is connected.G

Suppose by contradiction that was not
connected.

GT

The algorithm would have added an edge
crossing the two components.

v w

Is it feasible?
i.e., does it always produce a spanning tree?

The algorithm explicitly avoids cycles.

Output is a forest.GT

Is it a tree?

Is it connected?

 is connected.G

Suppose by contradiction that was not
connected.

GT

The algorithm would have added an edge
crossing the two components.

v w

Prim’s algorithm is optimal

Prim’s algorithm is optimal

In each iteration of the algorithm, there is a set of nodes
which are the nodes of a partial spanning tree.

S

Prim’s algorithm is optimal

In each iteration of the algorithm, there is a set of nodes
which are the nodes of a partial spanning tree.

S

An edge is added to “expand” the partial spanning tree,
which has the minimum cost.

Prim’s algorithm is optimal

In each iteration of the algorithm, there is a set of nodes
which are the nodes of a partial spanning tree.

S

An edge is added to “expand” the partial spanning tree,
which has the minimum cost.

This edge has one endpoint in and one in - and has
minimum cost.

S V S

Prim’s algorithm is optimal

In each iteration of the algorithm, there is a set of nodes
which are the nodes of a partial spanning tree.

S

An edge is added to “expand” the partial spanning tree,
which has the minimum cost.

This edge has one endpoint in and one in - and has
minimum cost.

S V S

So it must be part of every minimum spanning tree, by the
cut property.

Greedy Approach #3

Greedy Approach #3
Start with the full graph =(,).G V E

Greedy Approach #3
Start with the full graph =(,).G V E

Delete an edge from .G

Greedy Approach #3
Start with the full graph =(,).G V E

Delete an edge from .G

Which one?

Greedy Approach #3
Start with the full graph =(,).G V E

Delete an edge from .G

Which one?

The one with the maximum cost .ce

Greedy Approach #3
Start with the full graph =(,).G V E

Delete an edge from .G

Which one?

The one with the maximum cost .ce

We continue like this.

Greedy Approach #3
Start with the full graph =(,).G V E

Delete an edge from .G

Which one?

The one with the maximum cost .ce

We continue like this.

Do we always remove the considered edge from ?e G

Greedy Approach #3
Start with the full graph =(,).G V E

Delete an edge from .G

Which one?

The one with the maximum cost .ce

We continue like this.

Do we always remove the considered edge from ?e G

As long as we don’t disconnect the graph.

Start with the full graph =(,).

Delete an edge from .

Which one?

The one with the maximum cost .

We continue like this.

Do we always remove the considered edge from ?

As long as we don’t disconnect the graph.

G V E

G

ce

e G

Reverse-Delete Algorithm

Start with the full graph =(,).

Delete an edge from .

Which one?

The one with the maximum cost .

We continue like this.

Do we always remove the considered edge from ?

As long as we don’t disconnect the graph.

G V E

G

ce

e G

Reverse-Delete Algorithm

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

10

Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

10

Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6
7

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

6

1 2

7

9

4

Example

0

1 2 3

4

567

8

4

8

2

1 2

7

9

4

The cycle property

The cycle property

Assume that all edge costs are distinct.

The cycle property

Assume that all edge costs are distinct.

Let be any cycle of .C G

The cycle property

Assume that all edge costs are distinct.

Let be any cycle of .C G

Let =(,) be the maximum cost edge of
.

e w v
C

The cycle property

Assume that all edge costs are distinct.

Let be any cycle of .C G

Let =(,) be the maximum cost edge of
.

e w v
C

Then is not contained in any minimum
spanning tree of .

e
G

The cycle property

Assume that all edge costs are distinct.

Let be any cycle of .C G

Let =(,) be the maximum cost edge of
.

e w v
C

Then is not contained in any minimum
spanning tree of .

e
G

e

The cycle property

e

The cycle property

• Let T be a spanning tree that contains e. e

The cycle property

• Let T be a spanning tree that contains e.

• We will show that it does not have
minimum cost.

e

The cycle property

• Let T be a spanning tree that contains e.

• We will show that it does not have
minimum cost.

• We will substitute e with another edge e’,
resulting in a cheaper spanning tree.

e

The cycle property

• Let T be a spanning tree that contains e.

• We will show that it does not have
minimum cost.

• We will substitute e with another edge e’,
resulting in a cheaper spanning tree.

• How to find this edge e’?

e

The cycle property

u w
e

The cycle property
We delete from T.e

u w
e

The cycle property
We delete from T.e

u w

The cycle property
We delete from T.e

This partitions the nodes into
u w

The cycle property
We delete from T.e

This partitions the nodes into

 (containing).S u
u w

The cycle property
We delete from T.e

This partitions the nodes into

 (containing).S u

 - (containing).V S w

u w

The cycle property
We delete from T.e

This partitions the nodes into

 (containing).S u

 - (containing).V S w

u w

The cycle property
We delete from T.e

This partitions the nodes into

 (containing).S u

 - (containing).V S w

We follow the other path the cycle from to .u w

u w

The cycle property
We delete from T.e

This partitions the nodes into

 (containing).S u

 - (containing).V S w

We follow the other path the cycle from to .u w

At some point we cross from to - ,
following edge .

S V S
e′￼

u w

The cycle property
We delete from T.e

This partitions the nodes into

 (containing).S u

 - (containing).V S w

We follow the other path the cycle from to .u w

At some point we cross from to - ,
following edge .

S V S
e′￼

u w

e’

The cycle property
We delete from T.e

This partitions the nodes into

 (containing).S u

 - (containing).V S w

We follow the other path the cycle from to .u w

At some point we cross from to - ,
following edge .

S V S
e′￼

The resulting graph is a tree with smaller cost.

u w

e’

Reverse-Delete is optimal

Reverse-Delete is optimal

Consider any edge =(,) which is removed by Reverse-
Delete.

e v w

Reverse-Delete is optimal

Consider any edge =(,) which is removed by Reverse-
Delete.

e v w

Just before deleting, it lies on some cycle .C

Reverse-Delete is optimal

Consider any edge =(,) which is removed by Reverse-
Delete.

e v w

Just before deleting, it lies on some cycle .C

It has the maximum cost among edges, so it cannot be part
of any minimum spanning tree.

Is it feasible?
i.e., does it always produce a spanning tree?

e

Is it feasible?
i.e., does it always produce a spanning tree?

Is it connected? e

Is it feasible?
i.e., does it always produce a spanning tree?

Is it connected?

The algorithm will never disconnect the graph.
e

Is it feasible?
i.e., does it always produce a spanning tree?

Is it connected?

The algorithm will never disconnect the graph.

Is it a tree?

e

Is it feasible?
i.e., does it always produce a spanning tree?

Is it connected?

The algorithm will never disconnect the graph.

Is it a tree?

Suppose that it’s not.

e

Is it feasible?
i.e., does it always produce a spanning tree?

Is it connected?

The algorithm will never disconnect the graph.

Is it a tree?

Suppose that it’s not.

Then it contains some cycle .C

e

Is it feasible?
i.e., does it always produce a spanning tree?

Is it connected?

The algorithm will never disconnect the graph.

Is it a tree?

Suppose that it’s not.

Then it contains some cycle .C

Consider the most expensive edge on that
cycle.

e

e

Is it feasible?
i.e., does it always produce a spanning tree?

Is it connected?

The algorithm will never disconnect the graph.

Is it a tree?

Suppose that it’s not.

Then it contains some cycle .C

Consider the most expensive edge on that
cycle.

e

The algorithm would have removed that edge.

e

Are we done?

Are we done?
“Assume that all edge costs are distinct”.

What if they are not?

Are we done?
“Assume that all edge costs are distinct”.

What if they are not?

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Are we done?
“Assume that all edge costs are distinct”.

What if they are not?

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Non-distinct costs

Non-distinct costs
Take the original instance with non-distinct costs.

Non-distinct costs
Take the original instance with non-distinct costs.

Make the costs distinct by adding small numbers to the
costs to break ties.

ε

Non-distinct costs
Take the original instance with non-distinct costs.

Make the costs distinct by adding small numbers to the
costs to break ties.

ε

Obtain a perturbed instance.

Non-distinct costs
Take the original instance with non-distinct costs.

Make the costs distinct by adding small numbers to the
costs to break ties.

ε

Obtain a perturbed instance.

Run the algorithm on the perturbed instance.

Non-distinct costs
Take the original instance with non-distinct costs.

Make the costs distinct by adding small numbers to the
costs to break ties.

ε

Obtain a perturbed instance.

Run the algorithm on the perturbed instance.

Output the minimum spanning tree .GT

Non-distinct costs
Take the original instance with non-distinct costs.

Make the costs distinct by adding small numbers to the
costs to break ties.

ε

Obtain a perturbed instance.

Run the algorithm on the perturbed instance.

Output the minimum spanning tree .GT

 is a minimum spanning tree on the original instance.GT

 in the original instanceGT

Suppose that there was a cheaper spanning tree on the
original instance.

If contains different edges with the same costs, it is not
cheaper than on the original instance.

If contains different edges with different costs, we can
make small enough to make sure the ones we selected are
still cheaper.

G*T

G*T
G*T

G*T
ε

 Perturbing the costs

0

1 2 3

4

567

8

4

8+ε

11

8

2+ε

6
7+ε

1 2

7

9

4+ε

10

14

Perturbing the costs

1, 2, 2, 4, 4, 6, 7, 7, 8, 8, 9, 10, 11, 14

1, 2, 2+ε, 4, 4+ε, 6, 7, 7+ε, 8, 8+ε, 9, 10, 11, 14

Running time?

Running time?

Next lecture!

