
Algorithms and Data Structures
The Greedy Approach and Minimum Spanning Trees



The Greedy approach

• The goal is to come up with a global solution.


• The solution will be built up in small consecutive steps.


• For each step, the solution will be the best possible 
myopically, according to some criterion.



Graph Theory Basics



Graph Definitions
Graph ,  
   Set of nodes (or vertices) , with | | =  
   Set of edges , with | | =  
        Undirected: edge  = { , } 
        Directed:     edge  = ( , ) 

G = (V E)
V V n

E E m
e v w
e v w



Graph Definitions
Neighbours of  : Set of nodes connected by an edge with  
Degree of a node: number of neighbours 
     Directed graphs: in-degree and out-degree 
Path: A sequence of (non-repeating) nodes with consecutive nodes being connected 
by an edge. 
         Length: # nodes - 1 
Distance between  and  : length of the shortest path  and , 
Graph diameter: The longest distance in the graph

v v

u v u v



Lines, cycles, trees and 
cliques

Line Cycle

Clique Tree



Definitions
A spanning tree of a graph  is a tree containing all the 
nodes of .

G
G



Definitions

A connected component of a graph  is subgraph such 
that any two vertices are connected via some path.

G



Graph Representations

How do we represent a graph , ?


Adjacency Matrix


Adjacency List

G = (V E)



Adjacency Matrix A
The th node corresponds to the th row and the th column.


If there is an edge between  and  in the graph, then we have  
A[ , ] = 1, otherwise A[ , ] = 0.


For undirected graphs, necessarily A[ , ] = A[ , ]. For directed graphs, it could 
be that A[ , ] ≠ A[ , ].

i i i

i j
i j i j

i j j i
i j j i
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1 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0



Adjacency List L
• Nodes are arranged as a list, each node points to the 

neighbours.


• For undirected graphs, the node points only in one direction.


• For directed graphs, the node points in two directions, for     
in-degree and for out-degree
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Adjacency List L
• Nodes are arranged as a list, each node points to the 

neighbours.


• For undirected graphs, the node points only in one direction.


• For directed graphs, the node points in two directions, for     
in-degree and for out-degree.
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Adjacency Matrix vs 
Adjacency List

Adjacency Matrix Adjacency List

Memory: O(n2) Memory: O(m+n)

Checking adjacency of  and  
Time: O(1)

u v

Finding all adjacent nodes of  
Time: O(n) 

u

Checking adjacency of  and  
Time: O(min(deg( ),deg( ))

u v
u v

Finding all adjacent nodes of  
Time: O(deg( )) 

u
u



Graph Traversal (Search)

We would like to go over all the possible nodes of an 
(undirected) graph.


There are different ways of doing that. 


Two systematic ways:


Depth-First Search


Breadth-First Search



Graph Traversal (Search)

We would like to go over all the possible nodes of an 
(undirected) graph.


There are different ways of doing that. 


Two systematic ways:


Depth-First Search


Breadth-First Search

KT Chapter 3.2.

CLRS Chapter 20.2, 20.3



Minimum Spanning 
Tree via Greedy



Application
We have a set of locations.


We want to build a communication network, joining all of 
them.


We want to do it as cheaply as possible.


Every direct connection between two locations has a cost.


We want to have everything connected at the minimum 
cost.



Minimum Spanning Tree

Consider a connected graph =( , ), such that for every 
edge = ,  of , there is an associated positive cost .  


Goal: Find a subset  of  so that the graph =( ,  ) is 
connected and the total cost  is minimised.

G V E
e {v w} E ce

T E G′￼ V T

∑
e∈T

ce
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Claim: ( ,  ) is a treeV T
By definition, ( ,  ) is connected.V T

Suppose that it contained a cycle (i.e., it is not a tree).

Let  be an edge on that cycle.e

Take ( , -{ }).V T e

This is still connected.

All paths that used  can be rerouted through the other direction.e

( , -{ }) is a valid solution, and it is cheaper. Contradiction!V T e



Minimum Spanning Tree

Consider a connected graph =( , ), such that for every 
edge = ,  of , there is an associated positive cost .  


Goal: Find a subset  of  so that the graph =( ,  ) is 
connected and the total cost  is minimised.
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Minimum Spanning Tree

Consider a connected graph =( , ), such that for every 
edge = ,  of , there is an associated positive cost .  


Goal: Find a subset  of  so that the graph =( ,  ) is 
connected and the total cost  is minimised.

G V E
e {v w} E ce

T E G′￼ V T

∑
e∈T

ce

=( ,  ) is a spanning tree and the problem is called 
the Minimum Spanning Tree problem.

G′￼ V T



Greedy Approach #1
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Greedy Approach #1
Start with an empty set of edges .T

Add one edge to .T

Which one?

The one with the minimum cost .ce

We continue like this.

Do we always add the new edge  to  ?e T

Only if we don’t introduce any cycles.
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Start with an empty set of edges .


Add one edge to .


Which one?


The one with the minimum cost .


We continue like this.


Do we always add the new edge  to  ?


Only if we don’t introduce any cycles.

T

T

ce

e T

Kruskal’s Algorithm
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Greedy Approach #2
Start with an empty set of edges .T

Start with a node .s

Add an edge = ,  to .e {s w} T

Which one?

The one with the minimum cost .ce

We continue like this.

We only consider edges to neighbours that are not in the spanning tree.
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Greedy Approach #2
Start with an empty set of edges .


Start with a node .


Add an edge = ,  to .


Which one?


The one with the minimum cost .


We continue like this.


We only consider edges to neighbours that are not in the spanning tree.

T

s

e {s w} T

ce



Start with an empty set of edges .


Start with a node .


Add an edge = ,  to .


Which one?


The one with the minimum cost .


We continue like this.


We only consider edges to neighbours that are not in the spanning tree.

T

s

e {s w} T

ce

Prim’s Algorithm
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Are these algorithms 
optimal?

In the example, they both produced the same spanning tree.

This was actually the minimum spanning tree.

Do they always output the minimum spanning tree?
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but not .V
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between  and - . 

e {w v}
S V S

Then  is contained in every minimum 
spanning tree.

e

v w
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The cut property
Then  is contained in every minimum 
spanning tree.

e

Assume that some spanning tree  
does not contain .

GT
e

Since it is a spanning tree, it must 
contain some other edge  that crosses 
from  to - .

f
S V S

But  ≤ , so  - {  } U {  } is a 
spanning tree of smaller cost. 

ce cf GT f e

v w

No,  - {  } U {  } might not be a spanning tree! GT f e
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The cut property
Let  be a minimum spanning tree 
which does not contain = , .

GT
e {v w}

Since  is a spanning tree, there is path 
from  to .

GT
v w

Let  be the first node encountered on 
this path in -  and let  be the one 
before it. Let = , .

w′￼

V S v′￼

e′￼ {v′￼w′￼}

Consider  =  - {  } U {  }.G′￼T GT e′￼ e

v’

v w

w’
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Kruskal’s algorithm is optimal
Consider any edge = ,  that Kruskal’s algorithm adds to the output on some 
step.

e {u w}

Let  be the set of nodes reachable from  just before  is added to the output.S u e

It holds that  is in  and  is in - . (Why?)u S w V S

Because otherwise adding  would create a cycle.e

The algorithm has not before encountered any other edge crossing  and - . (Why?)S V S

Such an edge would have been added to the output by the algorithm.

The edge  must be the cheapest edge crossing  and - .e S V S

By the cut property, it belongs to every minimum spanning tree.
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Output   is a forest.GT

Is it a tree?

Is it connected?

 is connected.G

Suppose by contradiction that  was not 
connected. 

GT

The algorithm would have added an edge 
crossing the two components.
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Prim’s algorithm is optimal

In each iteration of the algorithm, there is a set  of nodes 
which are the nodes of a partial spanning tree.

S

An edge is added to “expand” the partial spanning tree, 
which has the minimum cost. 

This edge has one endpoint in  and one in -  and has 
minimum cost.

S V S

So it must be part of every minimum spanning tree, by the 
cut property.
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Start with the full graph =( ,  ).


Delete an edge from .


Which one?


The one with the maximum cost .


We continue like this.


Do we always remove the considered edge  from ?


As long as we don’t disconnect the graph.
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Start with the full graph =( ,  ).


Delete an edge from .


Which one?


The one with the maximum cost .


We continue like this.


Do we always remove the considered edge  from ?


As long as we don’t disconnect the graph.

G V E

G

ce

e G

Reverse-Delete Algorithm
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Assume that all edge costs are distinct.

Let  be any cycle of .C G

Let =( , ) be the maximum cost edge of 
. 

e w v
C

Then  is not contained in any minimum 
spanning tree of .

e
G
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The cycle property

• Let T be a spanning tree that contains e.

• We will show that it does not have 
minimum cost.

• We will substitute e with another edge e’, 
resulting in a cheaper spanning tree.

• How to find this edge e’?

e
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The cycle property
We delete  from T.e

This partitions the nodes into 

 (containing ).S u

 -  (containing ).V S w

We follow the other path the cycle from  to .u w

At some point we cross from  to  - , 
following edge .

S V S
e′￼

The resulting graph is a tree with smaller cost.

u w

e’
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Reverse-Delete is optimal

Consider any edge =( , ) which is removed by Reverse-
Delete.

e v w

Just before deleting, it lies on some cycle .C

It has the maximum cost among edges, so it cannot be part 
of any minimum spanning tree.
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Is it feasible?
i.e., does it always produce a spanning tree?

Is it connected?

The algorithm will never disconnect the graph.

Is it a tree?

Suppose that it’s not. 

Then it contains some cycle .C

Consider the most expensive edge  on that 
cycle.

e

The algorithm would have removed that edge.

e
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Non-distinct costs
Take the original instance with non-distinct costs.

Make the costs distinct by adding small numbers  to the 
costs to break ties.

ε

Obtain a perturbed instance.

Run the algorithm on the perturbed instance.

Output the minimum spanning tree .GT

 is a minimum spanning tree on the original instance.GT



 in the original instanceGT

Suppose that there was a cheaper spanning tree  on the 
original instance.


If  contains different edges with the same costs, it is not 
cheaper than  on the original instance.


If  contains different edges with different costs, we can 
make  small enough to make sure the ones we selected are 
still cheaper.

G*T

G*T
G*T

G*T
ε
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Perturbing the costs

1, 2, 2, 4, 4, 6, 7, 7, 8, 8, 9, 10, 11, 14  

1, 2, 2+ε, 4, 4+ε, 6, 7, 7+ε, 8, 8+ε, 9, 10, 11, 14  
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Running time?

Next lecture!


