
Algorithms and Data Structures
Minimum Spanning Trees - Greedy Algorithms Running Time



Minimum Spanning Tree

Consider a connected graph =( , ), such that for every 
edge = ,  of , there is an associated positive cost .  


Goal: Find a subset  of  so that the graph =( ,  ) is 
connected and the total cost  is minimised.
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=( ,  ) is a spanning tree and the problem is called 
the Minimum Spanning Tree problem.
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Start with an empty set of edges .


Add one edge to .


Which one?


The one with the minimum cost .


We continue like this.


Do we always add the new edge  to  ?


Only if we don’t introduce any cycles.
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Kruskal’s Algorithm
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Start with an empty set of edges .


Start with a node .


Add an edge = ,  to .


Which one?


The one with the minimum cost .


We continue like this.


We only consider edges to neighbours that are not in the spanning tree.
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Prim’s Algorithm



Example
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Prim’s algorithm running time
We add nodes to the expanding spanning tree S.


We need to figure out which node to add next.


We need to know the attachment cost of each node: 
 




Naive solution: For every step run over all candidates.


a(v) = min
e={u,v}:u∈S

ce

Θ(n2)



Priority Queues

Priority queue: A data structure that maintains


A set of elements .


Each with an associated value, .


The values denote priorities.


For Min-Priority Queues, the elements with the smallest 
values are those with the highest priority.

S

key(v)



Priority Queue Operations

 inserts a new item  in the priority queue. 


 finds the element with the maximum priority (the 
smallest value) in the priority queue and returns it (but does 
not remove it).


 finds the element with the maximum priority 
(smallest value) in the priority queue, returns it, and deletes 
it from the queue. 

Insert(Q, v) v

FindMin(Q)

ExtractMin(Q)



Priority Queue Operations

 inserts a new item  in the priority queue. 


 finds the element with the maximum priority (the 
smallest value) in the priority queue and returns it (but does 
not remove it).


 finds the element with the maximum priority 
(smallest value) in the priority queue, returns it, and deletes 
it from the queue. 


 sets .  

Insert(Q, v) v

FindMin(Q)

ExtractMin(Q)

ChangeKey(Q, v, α) key(v) = α



Priority Queues
The Priority Queue is an abstract data type.


In reality, we have to implement it with known data 
structures.


Many implementations exists, the usual one is with heaps.


We will not cover this here; it was covered in IADS last year. 
 
e.g. see KT Chapter 2.5, CLRS Chapter 6.5. (but you      
would have to also read 6.1 - 6.3). 



Priority Queue Operations

 inserts a new item  in the priority queue. 


 finds the element with the maximum priority (the 
smallest value) in the priority queue and returns it (but does 
not remove it).


 finds the element with the maximum priority 
(smallest value) in the priority queue, returns it, and deletes 
it from the queue. 


 sets .  

Insert(Q, v) v

FindMin(Q)

ExtractMin(Q)

ChangeKey(Q, v, α) key(v) = α

O(lg n)

O(1)

O(lg n)

O(lg n)



Prim’s algorithm running time
We add nodes to the expanding spanning tree S.


We need to figure out which node to add next.


We need to know the attachment cost of each node: 
 




PQ solution: Insert the nodes in a PQ, with the attachment cost as the key.


Run  to find the next node.


 to update the attachment cost. 

a(v) = min
e={u,v}:u∈S

ce

ExtractMin(Q)

ChangeKey(Q, v, α)

How many times? n − 1

How many times?
At most once per edge, thus ≤ m

Running time: O(m log n)



Start with an empty set of edges .


Add one edge to .


Which one?


The one with the minimum cost .


We continue like this.


Do we always add the new edge  to  ?


Only if we don’t introduce any cycles.
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Kruskal’s Algorithm

What is the tricky part here?



Assume that we consider edge  for possible 
inclusion in our spanning tree.


If  and  are in different connected components, we are 
good (why?)


Otherwise we should not add this edge (why?)


How can we find the connected component of ?

e = {v, w}

v w

v

Identifying connected 
components



Graph Traversal (Search)

We would like to go over all the possible nodes of an 
(undirected) graph.


There are different ways of doing that. 


Two systematic ways:


Depth-First Search


Breadth-First Search

KT Chapter 3.2.

CLRS Chapter 20.2, 20.3



Run DFS/BFS from  and see if  is part of its connected 
component. 


Equivalently: see if the DFS/BFS from  reaches .


Running time: DFS/BFS takes time , and we have 
to do that for every edge  .


We actually don’t have to compute the connected 
component for every edge! We can compute all the 
connected components in  time.

v w

v w

Θ(m + n)
→ Ω(m2)

O(m + n)

Implementation idea



Finding all connected 
components

C1 C2

C3



We actually don’t have to compute the connected 
component for every edge! We can compute all the 
connected components in  time.


So, for a candidate edge  we can check in  
time whether the endpoints are in the same connected 
component or not.


But on which graph?

O(m + n)

e = {w, v} O(1)

Implementation idea
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We actually don’t have to compute the connected component for 
every edge! We can compute all the connected components in 

 time.


So, for a candidate edge  we can check in  time 
whether the endpoints are in the same connected component or not.


But on which graph?


, where  is the set of edges of the spanning tree that 
we are developing.


This changes over time!

O(m + n)

e = {w, v} O(1)

G = (V, T ) T

Implementation idea

How many times can it change?  timesΩ(m)

Overall running time: Ω(m2)



An abstract data structure which maintains disjoint sets 
(e.g., here connected components of a graph). 


Its operations will allow us to find the set containing an 
element , and to merge two sets into a single set 
(e.g., when we add edges so that now two nodes are part of 
the same component, when they were not before).

u

The Union-Find Data Structure



Union-Find Operations

 creates a new Union-Find data structure 
where every element in  is a singleton set, i.e., 

 for  


 returns the name of the set containing element .


 changes the Union-Find data structure by 
merging the sets  and  into a single set.

MakeUnionFind(S)
S

{v1}, {v2,}, …{vk} S = {v1, v2, …, vk}

Find(u) u

Union(A, B)
A B
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MakeUnionFind(V ) Union({6}, {7})
Union({6,7}, {5}) Union({2}, {8})



Kruskal’s algorithm  
using Union-Find

We first sort the edges in terms of non-decreasing cost. 


We run  to initialise the components of 
 to each contain one node.


When considering an edge , we check if 
. 


If yes, we ignore the edge and continue with the next one.


If no, we add the edge to the spanning tree and run 
 to merge the two components.    

MakeUnionFind(V )
G = (V, T )

e = {w, v}
Find(w) = Find(v)

Union(Find(u), Find(v))



Union-Find Operations

 creates a new Union-Find data structure 
where every element in  is a singleton set, i.e., 

 for  


 returns the name of the set containing element .


 changes the Union-Find data structure by 
merging the sets  and  into a single set.

MakeUnionFind(S)
S

{v1}, {v2,}, …{vk} S = {v1, v2, …, vk}

Find(u) u

Union(A, B)
A B

T (MakeUnionFind(v))

T (Find(u))

T (Union(A, B))



Kruskal’s algorithm  
using Union-Find

We first sort the edges in terms of non-decreasing cost. 


We run  to initialise the components of 
 to each contain one node.


When considering an edge , we check if 
. 


If yes, we ignore the edge and continue with the next one.


If no, we add the edge to the spanning tree and run 
 to merge the two components.    

MakeUnionFind(V )
G = (V, T )

e = {w, v}
Find(w) = Find(v)

Union(Find(u), Find(v))



Kruskal’s algorithm  
Running time

We first sort the edges in terms of non-decreasing cost. 


 (why?)


We run  to initialise the components of  
to each contain one node.


When considering an edge , we check if . 


If yes, we ignore the edge and continue with the next one.


If no, we add the edge to the spanning tree and run 
 to merge the two components.    

O(m log m) = O(m log n)

MakeUnionFind(V ) G = (V, T )

e = {w, v} Find(w) = Find(v)

Union(Find(u), Find(v))

T (MakeUnionFind(v))

≤ 2m ⋅ T (Find(u))

≤ (n − 1) ⋅ T (Union(A, B)) ≤ m ⋅ T (Union(A, B))



Union-Find Operations

 creates a new Union-Find data structure 
where every element in  is a singleton set, i.e., 

 for  


 returns the name of the set containing element .


 changes the Union-Find data structure by 
merging the sets  and  into a single set.

MakeUnionFind(S)
S

{v1}, {v2,}, …{vk} S = {v1, v2, …, vk}

Find(u) u

Union(A, B)
A B

T (MakeUnionFind(v))

T (Find(u))

T (Union(A, B))
Suffices to show , and   are   T (Find(u)) T (Union(A, B)) O(log n)

and  is   T (MakeUnionFind(v)) O(m log n)



An abstract data structure which maintains disjoint sets 
(e.g., here connected components of a graph). 


Its operations will allow us to find the set containing an 
element , and to merge two sets into a single set 
(e.g., when we add edges so that now two nodes are part of 
the same component, when they were not before).


We need to implement it using actual data structures.

u

The Union-Find Data Structure



Define an array of sets called Component, where  is 
the set containing element .  
The size of Component is .


: Setup Component and initialise 
 for all .


Time: 


: Simply return 


Time: 

Component[u]
u

n = |S |

MakeUnionFind(S)
Component[u] = u u ∈ S

O(n)

Find(u) Component[u]

O(1)

A First Attempt



Define an array of sets called Component, where 
 is the set containing element .  

The size of Component is .


: Update  to  for every 
element  or .


Time: 

Component[u] u
n = |S |

Union(A, B) Component[u] A ∪ B
u ∈ A u ∈ B

O(n)

A First Attempt

Suffices to show , and   are   T (Find(u)) T (Union(A, B)) O(log n)
and  is   T (MakeUnionFind(v)) O(m log n)



Optimisation #1: For each set, keep a list of elements it contains. 


Update takes time  rather than 


Optimisation #2: Use the largest of  and  as the name for 
 (keep the sizes in an array ). 


Update takes time  assuming .


Still, worst case for  is , when e.g.,  
 and .

O( |A | + |B | ) O(n)

A B
A ∪ B size[ ⋅ ]

O( |B | ) |A | ≥ |B |

Union(A, B) O(n)
|A | = Ω(n) |B | = Ω(n)

Let’s optimise a bit



Still, worst case for  is , when e.g.,  
 and .


In a sequence of   operations, how often does 
this really happen?


Intuition: There can only be a few sets of very large size, so 
all the other  operations should be pretty cheap.

Union(A, B) O(n)
|A | = Ω(n) |B | = Ω(n)

k Union(A, B)

Union(A, B)

Let’s optimise a bit



Lemma: Any sequence of   operations takes 
 time.


Proof: Consider some element  for which  
gets updated throughout the sequence of  operations.


After  operations (…) elements still belong to their own 
singleton sets.

k Union(A, B)
O(k log k)

v Component[v]
k

k

Lemma: Sequence of 
 operationsUnion(A, B)



Lemma: Any sequence of   operations takes 
 time.


Proof: Consider some element  for which  
gets updated throughout the sequence of  operations.


After  operations at least  elements still belong to 
their own singleton sets.


What is the largest size that the set in which  belongs can 
have during the sequence?

k Union(A, B)
O(k log k)

v Component[v]
k

k n − 2k

v

Lemma: Sequence of 
 operationsUnion(A, B)



What is the largest size that the set in which  belongs can have 
during the sequence? 


The maximum size it can reach is , since at least  
elements did not participate in the merge.


Every time  is updated, the size of the set 
containing  at least doubles.


Note: It is important here to use our naming by the largest of 
the two sets that are merged.


How many updates to ?

v

2k n − 2k

Component[v]
v

Component[v]

Lemma: Sequence of 
 operationsUnion(A, B)

At most  updates.log2(2k)



Lemma: Any sequence of   operations takes 
 time.


Proof: At most  updates to .


At most  elements participating in updates. 


Time: 

k Union(A, B)
O(k log k)

log2(2k) Component[v]

2k

O(k log k)

Lemma: Sequence of 
 operationsUnion(A, B)



Union-Find Operations

 creates a new Union-Find data structure 
where every element in  is a singleton set, i.e., 

 for  


 returns the name of the set containing element .


 changes the Union-Find data structure by 
merging the sets  and  into a single set.

MakeUnionFind(S)
S

{v1}, {v2,}, …{vk} S = {v1, v2, …, vk}

Find(u) u

Union(A, B)
A B

T (MakeUnionFind(v))

T (Find(u))

T (Union(A, B))
Suffices to show , and   are   T (Find(u)) T (Union(A, B)) O(log n)

and  is   T (MakeUnionFind(v)) O(m log n)



Kruskal’s algorithm  
Running time

We first sort the edges in terms of non-decreasing cost. 


 


We run  to initialise the components of  
to each contain one node.


When considering an edge , we check if . 


If yes, we ignore the edge and continue with the next one.


If no, we add the edge to the spanning tree and run 
 to merge the two components.    

O(m log m) = O(m log n)

MakeUnionFind(V ) G = (V, T )

e = {w, v} Find(w) = Find(v)

Union(Find(u), Find(v))

T (MakeUnionFind(v))

≤ 2m ⋅ T (Find(u))

≤ (n − 1) ⋅ T (Union(A, B)) ≤ m ⋅ T (Union(A, B))T(m Union(A, B) operations) = O(m log m) = O(m log n)



Naming: Name a set  by the name of one of its elements .


Pointers: Every element  points to some element  
(possibly the same).  

S v

v u

A Better Implementation

w

u

s t

z



A Better Implementation

w

u

s t

z

: Every element  points to itself.MakeUnionFind(S) v

 timeO(n)



B

: Redirect the pointer of the smallest set to the 
largest set.
Union(A, B)

A Better Implementation

w

u

s t

z

A

y

x

How much time needed for ? Union(A, B)  timeO(1)



B

: Follow the arrows to find the name of the set.Find(u)

A Better Implementation

w

u

s t

z

A

y

x



How many times does an arrow get redirected?


i.e., how many times does a set chance its name?


Every time the set containing  changes name, it must be merged 
with a larger set, so its size at least doubles (by our naming 
convention). 


Initially the set containing  has size 1.


In the end it has size at most .


So, at most how many name changes?

u

u

n

Bounding the time of  Find(u)

 changesO(log n)



Union-Find Operations
 creates a new Union-Find data structure 

where every element in  is a singleton set, i.e., 
 for  


 returns the name of the set containing element .


 changes the Union-Find data structure by 
merging the sets  and  into a single set.

MakeUnionFind(S)
S

{v1}, {v2,}, …{vk} S = {v1, v2, …, vk}

Find(u) u

Union(A, B)
A B

T (MakeUnionFind(v)) = O(n)

T (Find(u)) = O(log n)

T (Union(A, B)) = O(1)

Suffices to show , and   are   T (Find(u)) T (Union(A, B)) O(log n)
and  is   T (MakeUnionFind(v)) O(m log n)



An even better 
implementation?

The pointer-based implementation can be made even better, 
using a similar argument as before, bounding the running 
time of a sequence of  operations rather than a 
single operation.


Details only if you are very interested: KT pp 197-199. 

Find(u)



A Final Remark
In this course we have focused (and we will mostly focus) on 
algorithms.


But sometimes the right use of data structure can make our 
algorithm more efficient.


You can think of a data structure as a “part of the 
algorithm”, which can be abstracted from the more high-
level ideas.


Data structures is a very big chapter in itself and an active 
area of research. 


