
INFR10052 Algorithms and Data Structures University of Edinburgh

ADS Tutorial 2 - Solutions∗

Instructor: Aris Filos-Ratsikas TA: Kat Molinet

October 13, 2024

Problem 1

Use Strassen’s algorithm to compute the matrix product(
1 3
5 7

)(
8 4
6 2

)
.

(Taken from Cormen, Leiserson, Riverst, and Stein (CLRS), exercise 28.2-1.)

Solution

This question is simply a matter of brute computation. Note: There was a typo in the lecture slides.
We should have P5 = (A11+A12) ·B22, not P5 = (A11+A22) ·B22. The correct version of P5 is used
below. If the variables A through H are defined as follows, then we can set up the equations for P1, · · · , P7

from lecture: (
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

P1 = (A11 +A22)(B11 +B22) = (1 + 7)(8 + 2) = 80

P2 = (A21 +A22)B11 = (5 + 7)8 = 96

P3 = A11(B12 −B22) = 1(4− 2) = 2

P4 = A22(B21 −B11) = 7(6− 8) = −14

P5 = (A11 +A12)B22 = (1 + 3)2 = 8

P6 = (−A11 +A21)(B11 +B12) = (−1 + 5)(8 + 4) = 48

P7 = (A12 −A22)(B21 +B22) = (3− 7)(6 + 2) = −32

Thus, using the definitions of matrix entries Cij from lecture, we have

C11 = P1 + P4 − P5 + P7 = 80 + (−14)− 8 + (−32) = 26

C12 = P3 + P5 = 2 + 8 = 10

C21 = P2 + P4 = 96 + (−14) = 82

C22 = P1 + P3 − P2 + P6 = 80 + 2− 96 + 48 = 34,

giving us an overall matrix product (
C11 C12

C21 C22

)
=

(
26 10
82 34

)
.

As a quick sanity check, we can multiply the two matrices we’re given the “normal” way to confirm that our
solution is correct.

∗The solutions contain additional explanations that are not necessary, if you were to answer such a question in an exam.

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 1

INFR10052 Algorithms and Data Structures University of Edinburgh

Problem 2

Describe an algorithm for efficiently multiplying a (p × q) matrix with a (q × r) matrix, where p, q, r are
arbitrary positive integers. The running time should be Θ(nlg(7)), where n = max{p, q, r}.

Solution

We already have an O(nlog 7) algorithm for multiplying two square matrices of size N ×N , where N = 2k for
some integer k ≥ 1. (This is just the Strassen algorithm.) For matrix multiplication of arbitrary dimension,
we can still use the Strassen algorithm just as before; we simply need to add a pre- and post-processing
step to get the matrices into the desired dimensions.

In particular, suppose our two matrices are of respective sizes p × q and q × r. Let n := max{p, q, r}
and define N := 2⌈log2 n⌉; i.e., N is the first power of 2 greater than or equal to n. Now we can simply pad
our original matrices with zeroes to be N×N matrices (for instance, by adding rows of 0’s to the bottom and
columns of 0’s to the right of the each original matrix). Now we can directly apply the Strassen algorithm
as before. Finally, to finish the multiplication, we remove the padded zeros from the final product to recover
the desired p× r matrix product.

What’s the runtime of this new algorithm? The pre-and post-processing stages can be accomplished in
time O(N2), and we know from lecture that the runtime of the Strassen algorithm is Θ(N log 7). To convert
our runtimes from functions of N to functions of n, we simply note that since N is defined as the lowest
power-of-2 upper bound on n, it must be true that N < 2n. This means that our runtimes above only
change by a constant factor; thus, their asymptotic behaviour is the same. Therefore, the overall runtime is
Θ(N log 7) = Θ(nlog 7).

Observation: A tangential issue with respect to this algorithm is that for this general “rectangular” case it
is NOT clear that this “reduce to Strassen” algorithm is often a good strategy. Suppose without loss of
generality that p = max{p, q, r}. Then the näıve matrix multiplication algorithm is Θ(pqr). Our asymptotic
running-time from “reduce to Strassen” is only better if qr ≥ plg(7)−1 ∼ p1.8, which is not necessarily the
case in the “rectangular” setting.

Problem 3

Consider the Selection algorithm that we saw in the lectures, but with one of the following two modifications:

(a) Instead of splitting into groups of size 5, we split into groups of size 3.

(b) Instead of splitting into groups of size 5, we split into groups of size 7.

For each of the cases (a) and (b), prove an asymptotic bound on the running time of the algorithm using
the analysis that was presented in the lectures. What do you observe?

Solution

(a) Groups of size 3. Just as we did in lecture, we can write a lower bound on the total number of
elements in the array larger than the median of medians x. The only differences between the lower
bound formula used in the lecture slides for partitions of size 5 and partitions of size 3:

• The total number of groups is ⌈n/3⌉ rather than ⌈n/5⌉.
• The number of elements > x in each of the groups whose “baby median” exceeds the median of
medians x is 2 when group size is 3. (The number 2 corresponds to the 1 element greater than
that group’s median, along with the median itself.)

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 2

INFR10052 Algorithms and Data Structures University of Edinburgh

Thus, our updated lower bound on the number of elements in the array larger than x is as follows:

2

(⌈
1

2
·
⌈
n

3

⌉⌉
− 2

)
≥ n

3
− 4.

Thus, the size of the lower subarray is at most n−
(
n
3 − 4

)
= 2n

3 + 4. By symmetry, it should be the
case that the upper subarray also has size at most 2n

3 + 4. Thus the subarray on which we recurse
has size at most |Smax| ≤ 2n

3 + 4. This is something we can use in our recurrence relation.

Recall from lecture that the runtime of Selection is upper-bounded by the following recurrence
relation:

T (n) ≤ T (n/k) + T (|Smax|) + bn,

where k is the partition size and b is some positive constant. Substituting our upper bound on |Smax|
when k = 3 gives the recurrence relation

T (n) ≤ T (n/3) + T (2n/3 + 4) + bn.

We could try “unrolling” this recurrence relation as we’ve done in the past; but the expansion quickly
becomes very complicated. So instead, we use a bit of problem-specific knowledge. The goal of Se-
lection is to find the kth smallest element of the input array. One way of approaching this problem
is to simply sort then entire array and return its kth element, which would take time O(n log n).
However, we’re hopeful that, in developing a method that avoids sorting the entire array, we might be
able to achieve a better runtime. We start with the optimistic guess that the runtime of our algorithm
is T (n) = O(n); i.e., that there exist constants c, n0 > 0 such that T (n) ≤ cn for all n ≥ n0. Do such
positive constants c and n0 exist? Our next step is to try and find out.

Let’s suppose for a moment that our guess is correct; i.e., that T (n) ≤ cn for some positive con-
stant c. Then, substituting into our original recurrence relation, we have

T (n) ≤ T

(
n

3

)
+ T

(
2n

3
+ 4

)
+ bn

≤ c · n
3
+ c

(
2

3
n+ 4

)
+ bn

= cn+ (4c+ bn)

Let’s pause for a moment to take stock. Recall that our original guess is that T (n) = O(n); i.e., there
exist positive constants c and n0 such that T (n) ≤ cn for all n ≥ n0. Looking at the last line in the
expansion of T (n) above, we find that this is true if and only if there exist positive constants c and
n0 such that the term in parenthesis, 4c+ bn, is at most zero. But for c, b, n > 0, the term 4c+ bn is
always positive. Thus, it would seem that T (n) is not O(n).

What should we do now? Let’s step back for a moment. The reason we started substituting T (n) ≤ cn
into our original recurrence relation was because we suspected (or hoped) that T (n) was O(n). We
now know that it is not. But since we know that the median of a list can be found by sorting the list
in time O(n log n), we know that our algorithm’s runtime shouldn’t be more than O(n log n). Thus,
we repeat the process above, but this time guessing that T (n) = O(n log n); i.e., that there exist
positive constants c, n0 such that T (n) ≤ cn log n for all n ≥ n0.

T (n) ≤ T

(
n

3

)
+ T

(
2n

3
+ 4

)
+ bn

≤ c

(
n

3

)
log

(
n

3

)
+ c

(
2n

3
+ 4

)
log

(
2n

3
+ 4

)
+ bn

= cn log n+

(
− c

[
n log(3) +

2n

3
log

(
n

3

)
−

(
2n

3
+ 4

)
log

(
2n

3
+ 4

)]
+ bn

)
,

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 3

INFR10052 Algorithms and Data Structures University of Edinburgh

where, while the last step looks complicated, it’s simply an expansion of the term c(n/3) log(n/3)
according to log rules in order to be able to write cn log n as the first term of the last line. To simplify
notation, let’s call the bracketed expression in the last line g(n).

From the above, we can see that T (n) ≤ cn log n if and only if −c g(n) + bn ≤ 0. But due to
the complexity of g(n), it’s hard to get a sense of this function’s behaviour just from looking at
this expression. Instead, we can simply plug it into a graphing calculator. We see graphically that
g(n) > 0 for all n ≥ 25. Thus, for n ≥ 25 and c ≥ bn

g(n) , we have that T (n) ≤ cn log n. In other words,

T (n) = O(n log n). To fix a value of c in terms of b, we note (again, by graphing) that n
g(n) ≤ 2 for

all n ≥ 70. So for all n ≥ 70, c ≥ 2b suffices.

Now we need to prove our claim using mathematical induction. To prove that T (n) = O(n log n), we
simply need to show that there exists some c > 0 such that T (n) ≤ c log n for all n ≥ 70. But as it
turns out, we can actually demonstrate this claim for all n > 0 without much extra work. So we do
that below.

Claim. Let T (n) ≤ T (n/3) + T (2n/3 + 4) + bn. Then there exists some constant c > 0 such that
T (n) ≤ cn for all n > 0.

Proof. First, we define
a := max

n∈{1,2,··· ,70}

{
T (n)/n logn

}
,

and c := max{a, 2b}.

Base case. Suppose n ∈ {1, 2, · · · , 70}. Then by the definition of a, we know that T (n) ≤ an log n.
And by the definition of c, it must be true that a ≤ c. Thus, we have

T (n) ≤ an log n ≤ cn log n

for all n ∈ {1, 2, · · · , 70}.

Induction step. Suppose the claim holds for all n ≤ 70 = k. Then for n = k + 1, we have
the following:

T (n) ≤ T

(
n

3

)
+ T

(
2n

3
+ 4

)
+ bn Our original recurrence relation

≤ c

(
n

3

)
log

(
n

3

)
+ c

(
2n

3
+ 4

)
log

(
2n

3
+ 4

)
+ bn Applying the induction hypothesis

= cn log n+ (−c g(n) + bn) Algebraic simplification (see above)

≤ cn log n+
(
− c g(n) + 1

2cn
)

By the definition of c

= cn log n+ c
(
1
2n− g(n)

)
Algebraic manipulation

≤ cn log n,

where the last step comes from the fact that for all n ≥ 70, we showed earlier that n
g(n) ≤ 2; or,

equivalently, 1
2n ≤ g(n).

(b) Groups of size 7.

Following the same reasoning as in part (a), we have the following lower bound on the number
of elements in the array larger than the “median of medians” x when partitions have size 7:

4

(⌈
1

2
·
⌈
n

7

⌉⌉
− 2

)
≥ 2n

7
− 8.

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 4

INFR10052 Algorithms and Data Structures University of Edinburgh

Thus, the size of the lower subarray is at most n−
(
2n
7 − 8

)
= 5n

7 +8. By symmetry, it should be the
case that the upper subarray also has size at most 5n

7 + 8. Thus the subarray on which we recurse
has size at most |Smax| ≤ 5n

7 + 8. This is something we can use in our recurrence relation.

Recall from lecture that the runtime of Selection is upper-bounded by the following recurrence
relation:

T (n) ≤ T (n/k) + T (|Smax|) + bn,

where k is the partition size and b is some positive constant. Substituting our upper bound on |Smax|
when k = 7 gives the recurrence relation

T (n) ≤ T (n/7) + T (5n/7 + 8) + bn.

As in part (a), we start with the optimistic guess that the runtime of T (n) = O(n); i.e., that there
exist constants c, n0 > 0 such that T (n) ≤ cn for all n ≥ n0. Do such positive constants c and n0

exist? Our next step is to try and find out.

Let’s suppose for a moment that our guess is correct; i.e., that T (n) ≤ cn for some positive con-
stant c. Then, substituting into our original recurrence relation, we have

T (n) ≤ T

(
n

7

)
+ T

(
5n

7
+ 8

)
+ bn

≤ c · n
7
+ c

(
5

7
n+ 8

)
+ bn

=
6

7
cn+ 8c+ bn

= cn+

(
− 1

7
cn+ 8c+ bn

)
Our original guess is that T (n) = O(n); i.e., there exist positive constants c and n0 such that T (n) ≤ cn
for all n ≥ n0. Looking at the last line in the expansion of T (n) above, we find that this is true if
and only if there exist positive constants c and n0 such that the term in parenthesis, − 1

7cn+8c+ bn,
is at most zero. Let’s see if we can find such constants. Through a bit of algebraic manipulation, we
find that

−1

7
cn+ 8c+ bn ≤ 0 ⇐⇒ c ≥ 7b

n

n− 56
.

If n ≥ 112, then n
n−56 ≤ 2, in which case it suffices to have c ≥ 14b. Thus, it would seem that

T (n) is indeed O(n). Now, we must prove this formally via mathematical induction. To prove that
T (n) = O(n), we simply need to show that for there exists some c > 0 such that T (n) ≤ cn for all
n ≥ 112. But as it turns out, we can actually demonstrate this claim for all n > 0 without much
extra work. So we do that below.

Claim. Let T (n) ≤ T (n/7) + T (5n/7 + 8) + bn. Then there exists some constant c > 0 such that
T (n) ≤ cn for all n > 0.

Proof. First, we define
a := max

n∈{1,2,··· ,112}

{
T (n)/n

}
,

and c := max{a, 14b}.

Base case. Suppose n ∈ {1, 2, · · · , 112}. Then by the definition of a, we know that T (n) ≤ an.
And by the definition of c, it must be true that a ≤ c. Thus, we have

T (n) ≤ an ≤ cn

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 5

INFR10052 Algorithms and Data Structures University of Edinburgh

for all n ∈ {1, 2, · · · , 112}.

Induction step. Suppose the claim holds for all n ≤ 112 = k. Then for n = k + 1, we have
the following:

T (n) ≤ T

(
n

7

)
+ T

(
5n

7
+ 8

)
+ bn Our original recurrence relation

≤ c · n
7
+ c

(
5

7
n+ 8

)
+ bn Applying the induction hypothesis

= cn+

(
− 1

7
cn+ 8c+ bn

)
Algebraic simplification

≤ cn+

(
− 1

7
cn+ 8c+

1

14
cn

)
By the definition of c

= cn+

(
8c− 1

14
cn

)
Algebraic simplification

≤ cn+

(
8c− 112

14
c

)
Using assumption that n ≥ 112

= cn+ (8c− 8c)

= cn.

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 6

