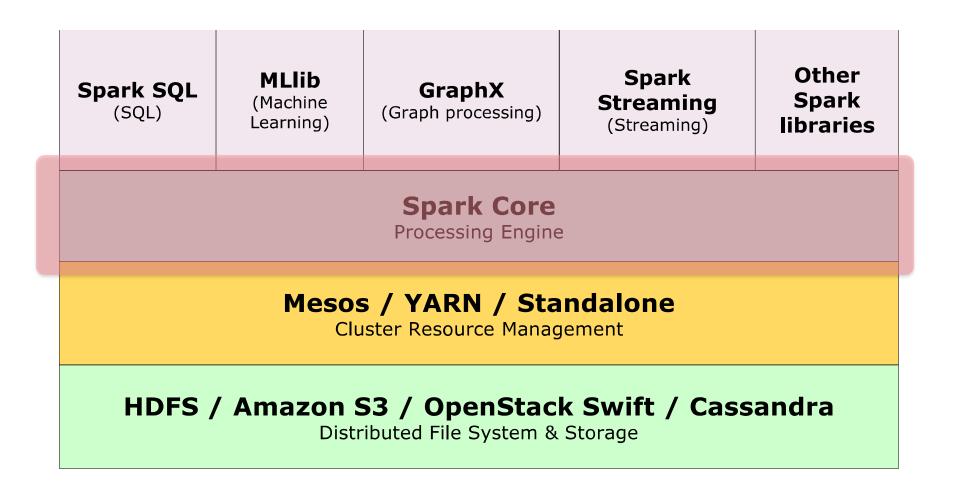
Programming for Data Science at Scale

Distributed Query Processing

THE UNIVERSITY of EDINBURGH

Amir Shaikhha, Fall 2024

Recap: Spark Software Stack



Recap: Programming Models

- Spark vs. Hadoop MapReduce
 - More flexible programming model
 - General execution graphs
 - In-memory storage

 Let's count UK students who have debt & financial dependents

```
case class Demographic(id: Int, age: Int, ...)
case class Finances(id: Int, hasDebt: Boolean, ...)
// Pair RDD (id, demographics)
val demographics = sc.textFile(...)...
// Pair RDD (id, finances)
val finances = sc.textFile(...)...
```

Possibility 1

```
demographics.join(finances)
  .filter({ p =>
    p._2._1.country == "UK" &&
    p._2._2.hasFinancialDependents &&
    p._2._2.hasDebt
}).count
```

- Steps
 - 1. Inner join
 - 2. Filter to only consider people in UK
 - 3. Filter to only consider people with debt & finanical depedents

• Possibility 2

```
val filtered = finances.filter({p =>
    p._2.hasFinancialDependents &&
    p._2.hasDebt })
demographics.filter( p => p._2.country == "UK")
    .join(filtered)
    .count
```

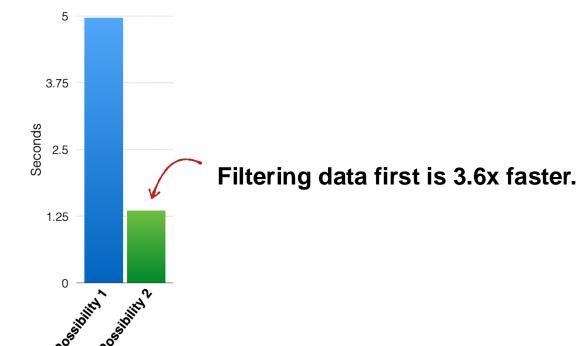
- Steps
 - 1. Filter to only consider people with debt & finanical depedents
 - 2. Filter to only consider people in UK
 - 3. Inner join on smaller datasets

• Possibility 3

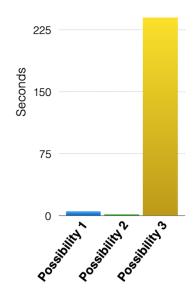
```
val cart = demographics.cartesian(finances)
cart.filter(p => p._1._1 == p._2._1)
.filter({ p =>
    p._1._2.country == "UK" &&
    p._2._2.hasFinancialDependents &&
    p._2._2.hasDebt
}).count
```

- Steps
 - 1. Cartesian product on both datasets
 - 2. Filter to only consider the pairs with the same id
 - 3. Filter to only consider people in UK
 - 4. Filter to only consider pople with debt & finanical depedents

- The end result is the same for all three of these possibilities
- However, the execution time is vastly different



- The end result is the same for all three of these possibilities
- However, the execution time is vastly different



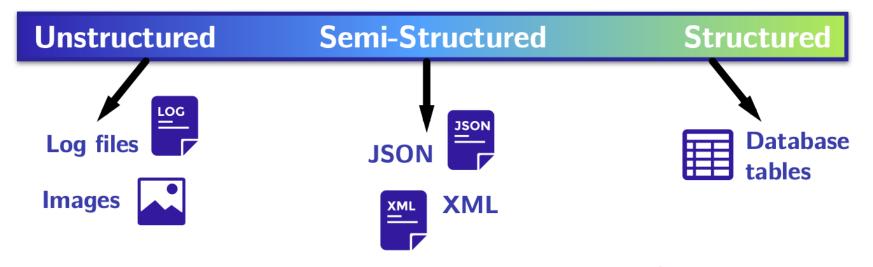
Cartesian product is 177x slower!

- So far, it was the responsibility of the programmer to think carefully about how Spark jobs might actually be executed cluster to get good performance
- Could Spark automatically rewrite the code in possibility 3 to possibility 2?

Given more structural information, Spark can do many optimizations.

Structured vs. Unstructured Data

• Data falls on spectrum from unstructured to structured.



Structured Data vs RDDs

- Spark RDDs don't know anything about the schema of data
- Spark only knows that the RDD is parameterized with arbitrary types (e.g., Person, Account, Demographic)
- However, it doesn't know anything about the structure of these types

Structured Data Example

Assume a dataset of Account objects

case class Account(name: String, balance: Double, risk: Boolean)

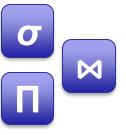
• What Spark RDDs see:

What DBMSes see:

name: String	balance: Double	risk: Boolean
name: String	balance: Double	risk: Boolean
name: String	balance: Double	risk: Boolean
name: String	balance: Double	risk: Boolean

Structured vs Unstructured Computation

- The same can be said about computation.
- Spark:
 - Functional transformations on data.
 - Passing function literals to higher-order functions (e.g., map, flatMap, and filter)
- DBMSes:
 - Delarative transformations on data
 - Specialized/structured, pre-defined operations



Structured vs. Unstructured

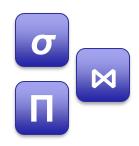
• Spark RDDs:

DBMSes:

Not so much structure. Difficult to Optimize!

Lots of structure. Lots of optimization opportunities

name: String	balance: Double	risk: Boolean
name: String	balance: Double	risk: Boolean
name: String	balance: Double	risk: Boolean
name: String	balance: Double	risk: Boolean

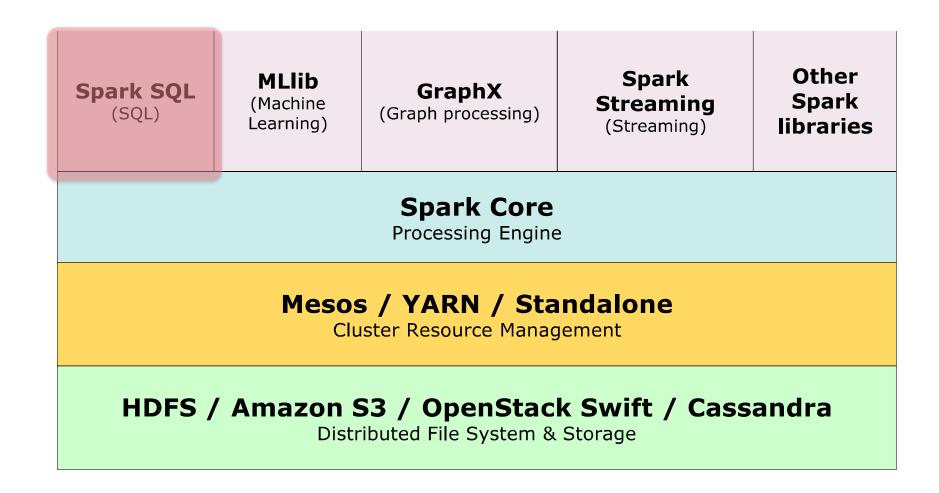


Optimizations + Spark?

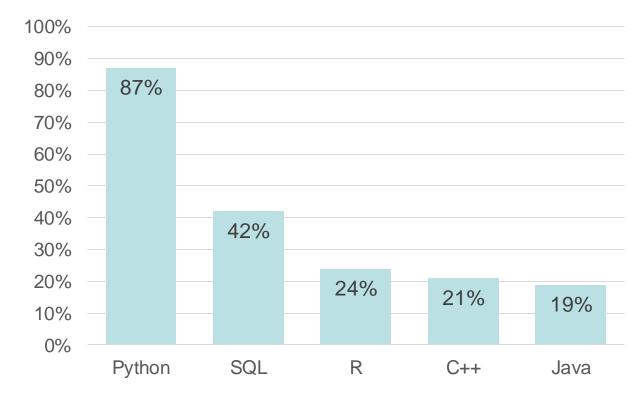
How can Spark automatically do these optimizations?

Spark SQL

Spark Software Stack



Relational Queries (SQL)



[[]Kaggle Survey 2020]

Relational Queries (SQL)

- Everything about SQL is structured
- SQL = Structured Query Language
 - Fixed set of data types: Int, Long, String, etc.
 - Fixed set of operations: select, where, group by, join, etc.
- Relational databases exploit these structures to get performance speedups

Relational Queries (SQL)

- Data organized into one or more tables
- Table = Relation
 - Column=Attribute
 - Row=Record=Tuple
- Tables represent a collection of objects of a certain type

SQL for Spark

- It's hard to connect big data processing pipelines to a relational database
- It would be nice to
 - Seamlessly intermix SQL queries with Scala
 - Get all the DB optimizations on Spark jobs

Spark SQL delivers both!

Spark SQL Goals

- Support relational processing on both Spark RDDs and on external data sources with a friendly API
- 2. High performance, by using techniques from the DB community
- 3. Support new data sources such as semistructured data and external DBs.

Spark SQL APIs

- DataFrames
- SQL literal syntax
- Datasets

DataFrame

- Core abstraction of Spark SQL
 Equivalent to a table in a relational DB
- DataFrame = RDD + schema
- DataFrames are untyped!
 - Scala compiler doesn't check the types in their schema
 - Transformations are untyped.

Creating DataFrames

- From RDDs
 - Inferring schema
 - Explicitly specifying schema
- Reading a data source from file

Creating DataFrames (cont.)

- From RDDs
 - Inferring schema

val rowRDD = ... // DataFrame by inferring schema val peopleDF = spark.createDataFrame(rowRDD)

- Explicitly specifying schema

```
val rowRDD = ...
// DataFrame by explicitly specifying schema
val peopleDF = spark.createDataFrame(rowRDD, schema)
```

SQL literal syntax

 Progammers can use SQL syntax to operate on DataFrames

// DataFrame by explicitly specifying schema
val peopleDF = spark.createDataFrame(rowRDD, schema)

// SQL literals are passed to sql method
spark.sql("SELECT * FROM people WHERE age > 27")

How to connect people and peopleDF?

SQL literal syntax (cont.)

 Progammers can use SQL syntax to operate on DataFrames

// DataFrame by explicitly specifying schema
val peopleDF = spark.createDataFrame(rowRDD, schema)
// Register the DataFrame as a SQL temporary view
peopleDF.createOrRepalceTempView("people")
// SQL literals are passed to sql method
spark.sql("SELECT * FROM people WHERE age > 27")

DataFrame API

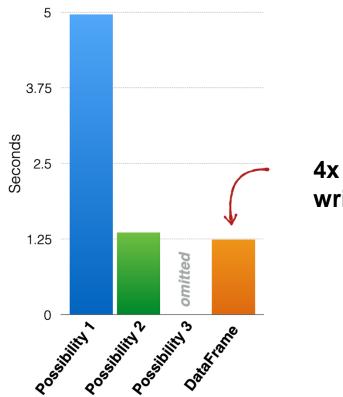
- A relational API over Spark RDDs
 - -select
 - -where
 - -limit
 - -orderBy
 - -groupBy
 - -join
- Can be automatically aggressively optimized

DataFrame Example

demographicsDF.join(financesDF,

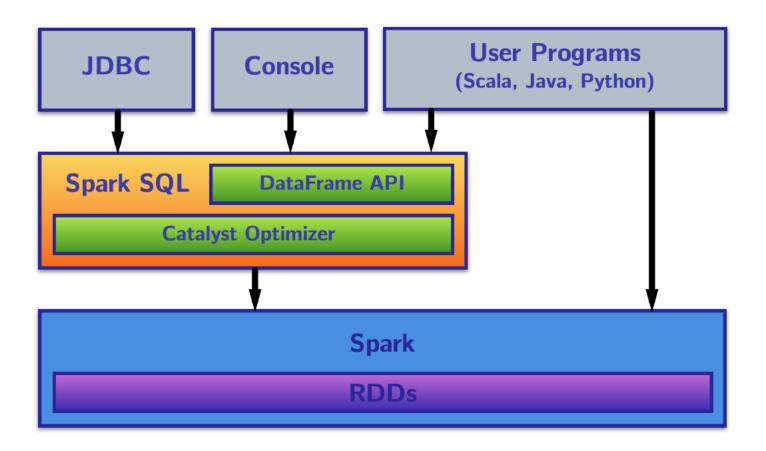
- demographicsDF("ID") === financesDF("ID"), "inner")
- .filter(\$"hasDebt" && \$"hasFinancialDependents")
- .filter(\$"country" === "UK")

.count



4x faster than almost the same program written using RDDs

Spark SQL Architecture



Catalyst

- Spark SQL's query optimizer
- Assumptions
 - Has full knowledge of all data types
 - Knows the exact schema of our data
 - Has detailed knowledge of computations
- Optimizations
 - Reordering operations
 - Reduce the amount of data read
 - Pruning unneeded partitioning

Limitations of DataFrame

- Untyped
 - Runtime exceptions even if the code compiles
 - Would be great to catch such errors at compilation time
- Limited data types
 - Semi-structured/structured data
 - Otherwise, use RDDs

Dataset

Typed variant of DataFrame!

type DataFrame = Dataset[Row]

- In the middle between DataFrames and RDDs
 - DataFrame operations
 - More typed operations
 - Higher-order functions like map, flatMap, filter

Limitations of Dataset

- Catalyst cannot optimize higher-order functional operations

 Similar to RDDs
- Limited data types
 - Semi-structure/structured data
 - Otherwise, use RDDs

Dataset / DataFrame / RDD

- Use datasets when
 - Structured/semi-structured data
 - Type-safety
 - Functional APIs
 - Good performance, but not the best
- Use DataFrames when
 - Structured/semi-structured data
 - Best possible performance, automatically optimized
- Use RDDs when
 - Unstructured/complex data
 - Fine-tune and manage low-level datails of RDD computations

Resources

- Compulsory reading:
 - -Spark SQL [SIGMOD'15]
 - Spark SQL: Relational data processing in Spark
- Recommended reading
 - -Apache PIG [VLDB'09]
 - -Shark [SIGMOD'13]
 - -DyradLINQ [OSDI'08]

QUESTIONS?