
Programming for Data Science at Scale

Distributed Query Processing

Amir Shaikhha, Fall 2024

Recap: Spark Software Stack

2

Recap: Programming Models

• Spark vs. Hadoop MapReduce

– More flexible programming model

– General execution graphs

– In-memory storage

3

RDD Example

• Let’s count UK students who have debt &

financial dependents

4

case class Demographic(id: Int, age: Int, ...)

case class Finances(id: Int, hasDebt: Boolean, ...)

// Pair RDD (id, demographics)

val demographics = sc.textFile(...)...

// Pair RDD (id, finances)

val finances = sc.textFile(...)...

RDD Example

• Possibility 1

• Steps

1. Inner join

2. Filter to only consider people in UK

3. Filter to only consider people with debt &

finanical depedents
5

demographics.join(finances)

 .filter({ p =>

 p._2._1.country == "UK" &&

 p._2._2.hasFinancialDependents &&

 p._2._2.hasDebt

 }).count

RDD Example

• Possibility 2

• Steps

1. Filter to only consider people with debt &

finanical depedents

2. Filter to only consider people in UK

3. Inner join on smaller datasets
6

val filtered = finances.filter({p =>

 p._2.hasFinancialDependents &&

 p._2.hasDebt })

demographics.filter(p => p._2.country == "UK")

 .join(filtered)

 .count

RDD Example

• Possibility 3

• Steps

1. Cartesian product on both datasets

2. Filter to only consider the pairs with the same id

3. Filter to only consider people in UK

4. Filter to only consider pople with debt & finanical depedents
7

val cart = demographics.cartesian(finances)

cart.filter(p => p._1._1 == p._2._1)

 .filter({ p =>

 p._1._2.country == "UK" &&

 p._2._2.hasFinancialDependents &&

 p._2._2.hasDebt

 }).count

RDD Example

• The end result is the same for all three of

these possibilities

• However, the execution time is vastly

different

8

Filtering data first is 3.6x faster.

RDD Example

• The end result is the same for all three of

these possibilities

• However, the execution time is vastly

different

9

Cartesian product is 177x slower!

RDD Example

• So far, it was the responsibility of the

programmer to think carefully about how

Spark jobs might actually be executed

cluster to get good performance

• Could Spark automatically rewrite the

code in possibility 3 to possibility 2?

10

Given more structural information,

Spark can do many optimizations.

• Data falls on spectrum from unstructured

to structured.

Structured vs. Unstructured

Data

11

Structured Data vs RDDs

• Spark RDDs don’t know anything about

the schema of data

• Spark only knows that the RDD is

parameterized with arbitrary types (e.g.,
Person, Account, Demographic)

• However, it doesn’t know anything about

the structure of these types

12

Structured Data Example

• Assume a dataset of Account objects

• What Spark RDDs see:

• What DBMSes see:

13

case class Account(name: String, balance: Double, risk: Boolean)

Structured vs Unstructured

Computation
• The same can be said about computation.

• Spark:

– Functional transformations on data.

– Passing function literals to higher-order
functions (e.g., map, flatMap, and filter)

• DBMSes:

– Delarative transformations on data

– Specialized/structured, pre-defined operations

14

σ

Π
⋈

Structured vs. Unstructured

• Spark RDDs:

• DBMSes:

15

σ

Π
⋈

Not so much structure.

Difficult to Optimize!

Lots of structure.

Lots of optimization opportunities

Optimizations + Spark?

• How can Spark automatically do these

optimizations?

16

Spark SQL

Spark Software Stack

17

Relational Queries (SQL)

18

87%

42%

24% 21% 19%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Python SQL R C++ Java

[Kaggle Survey 2020]

Relational Queries (SQL)

• Everything about SQL is structured

• SQL = Structured Query Language

– Fixed set of data types: Int, Long, String, etc.

– Fixed set of operations: select, where, group

by, join, etc.

• Relational databases exploit these

structures to get performance speedups

19

Relational Queries (SQL)

• Data organized into one or more tables

• Table = Relation

– Column=Attribute

– Row=Record=Tuple

• Tables represent a collection of objects of

a certain type

20

SQL for Spark

• It’s hard to connect big data processing

pipelines to a relational database

• It would be nice to

– Seamlessly intermix SQL queries with Scala

– Get all the DB optimizations on Spark jobs

21

Spark SQL delivers both!

Spark SQL Goals

1. Support relational processing on both

Spark RDDs and on external data

sources with a friendly API

2. High performance, by using techniques

from the DB community

3. Support new data sources such as semi-

structured data and external DBs.

22

Spark SQL APIs

• DataFrames

• SQL literal syntax

• Datasets

23

DataFrame

• Core abstraction of Spark SQL

– Equivalent to a table in a relational DB

• DataFrame = RDD + schema

• DataFrames are untyped!

– Scala compiler doesn’t check the types in

their schema

– Transformations are untyped.

24

Creating DataFrames

• From RDDs

– Inferring schema

– Explicitly specifying schema

• Reading a data source from file

25

Creating DataFrames (cont.)

• From RDDs

– Inferring schema

– Explicitly specifying schema

26

val rowRDD = ...

// DataFrame by explicitly specifying schema

val peopleDF = spark.createDataFrame(rowRDD, schema)

val rowRDD = ...

// DataFrame by inferring schema

val peopleDF = spark.createDataFrame(rowRDD)

SQL literal syntax

• Progammers can use SQL syntax to

operate on DataFrames

27

// DataFrame by explicitly specifying schema

val peopleDF = spark.createDataFrame(rowRDD, schema)

// SQL literals are passed to sql method

spark.sql("SELECT * FROM people WHERE age > 27")

How to connect
people and peopleDF?

SQL literal syntax (cont.)

• Progammers can use SQL syntax to

operate on DataFrames

28

// DataFrame by explicitly specifying schema

val peopleDF = spark.createDataFrame(rowRDD, schema)

// Register the DataFrame as a SQL temporary view

peopleDF.createOrRepalceTempView("people")

// SQL literals are passed to sql method

spark.sql("SELECT * FROM people WHERE age > 27")

DataFrame API

• A relational API over Spark RDDs

– select

– where

– limit

– orderBy

– groupBy

– join

• Can be automatically aggressively

optimized
29

DataFrame Example

30

demographicsDF.join(financesDF,

 demographicsDF("ID") === financesDF("ID"), "inner")

 .filter($"hasDebt" && $"hasFinancialDependents")

 .filter($"country" === "UK")

 .count

4x faster than almost the same program

written using RDDs

Spark SQL Architecture

31

Catalyst

• Spark SQL’s query optimizer

• Assumptions

– Has full knowledge of all data types

– Knows the exact schema of our data

– Has detailed knowledge of computations

• Optimizations

– Reordering operations

– Reduce the amount of data read

– Pruning unneeded partitioning
32

Limitations of DataFrame

• Untyped

– Runtime exceptions even if the code compiles

– Would be great to catch such errors at

compilation time

• Limited data types

– Semi-structured/structured data

– Otherwise, use RDDs

33

Dataset

• Typed variant of DataFrame!

• In the middle between DataFrames and

RDDs

– DataFrame operations

– More typed operations

– Higher-order functions like map, flatMap, filter

34

type DataFrame = Dataset[Row]

Limitations of Dataset

• Catalyst cannot optimize higher-order

functional operations

– Similar to RDDs

• Limited data types

– Semi-structure/structured data

– Otherwise, use RDDs

35

Dataset / DataFrame / RDD

• Use datasets when

– Structured/semi-structured data

– Type-safety

– Functional APIs

– Good performance, but not the best

• Use DataFrames when

– Structured/semi-structured data

– Best possible performance, automatically optimized

• Use RDDs when

– Unstructured/complex data

– Fine-tune and manage low-level datails of RDD computations

36

Resources

• Compulsory reading:

– Spark SQL [SIGMOD’15]

• Spark SQL: Relational data processing in

Spark

• Recommended reading

– Apache PIG [VLDB’09]

– Shark [SIGMOD’13]

– DyradLINQ [OSDI’08]
37

QUESTIONS?

38

	Slide 1
	Slide 2: Recap: Spark Software Stack
	Slide 3: Recap: Programming Models
	Slide 4: RDD Example
	Slide 5: RDD Example
	Slide 6: RDD Example
	Slide 7: RDD Example
	Slide 8: RDD Example
	Slide 9: RDD Example
	Slide 10: RDD Example
	Slide 11: Structured vs. Unstructured Data
	Slide 12: Structured Data vs RDDs
	Slide 13: Structured Data Example
	Slide 14: Structured vs Unstructured Computation
	Slide 15: Structured vs. Unstructured
	Slide 16: Optimizations + Spark?
	Slide 17: Spark Software Stack
	Slide 18: Relational Queries (SQL)
	Slide 19: Relational Queries (SQL)
	Slide 20: Relational Queries (SQL)
	Slide 21: SQL for Spark
	Slide 22: Spark SQL Goals
	Slide 23: Spark SQL APIs
	Slide 24: DataFrame
	Slide 25: Creating DataFrames
	Slide 26: Creating DataFrames (cont.)
	Slide 27: SQL literal syntax
	Slide 28: SQL literal syntax (cont.)
	Slide 29: DataFrame API
	Slide 30: DataFrame Example
	Slide 31: Spark SQL Architecture
	Slide 32: Catalyst
	Slide 33: Limitations of DataFrame
	Slide 34: Dataset
	Slide 35: Limitations of Dataset
	Slide 36: Dataset / DataFrame / RDD
	Slide 37: Resources
	Slide 38: Questions?

