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MapReduce – under the hood
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What is shuffling?
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What happens when you do a groupBy or a groupByKey?

move data from one node to another to be "grouped with" its key.

Shuffling is expensive because:

• Network I/O (moving data between nodes).

• Disk I/O when data is too large to fit in memory.

• Serialisation and deserialisation of data.



Example of Shuffling
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We have a list of three ATMs from which customers withdraw money. Now, 

we want to calculate how much each customer has withdrawn in total.



Example of Shuffling
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What is the solution?

Which data needs to be moved between nodes?

What might the cluster look like with this data 

distributed over it? 



Example of Shuffling
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ATMWithdrawal(1, 101, 200)

ATMWithdrawal(2, 102, 150)

ATMWithdrawal(3, 103, 300)
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(2, 50)
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(1, [200, 100]) (2, [150, 50]) (3, [300, 400])

Map

GroupByKey
SHUFFLE

Can we make it better?



Reduce Instead of Grouping
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reduceByKey combines groupByKey and reduction 

into one operation

Key Advantage: local aggregation



Example of Shuffling

8

ATMWithdrawal(1, 101, 200)

ATMWithdrawal(2, 102, 150)
ATMWithdrawal(2, 103, 50)

ATMWithdrawal(3, 103, 300)

ATMWithdrawal(1, 101, 100)

ATMWithdrawal(2, 102, 50)

ATMWithdrawal(3, 103, 400)

(1, 200)

(2, 150)

(2, 50)

(3, 300)

(1, 100)

(2, 50)

(3, 400)
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When will shuffle occur? 
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1. The return type of certain transformations:

2. Using the function toDebugString to see its 

execution plan:



Where else shuffling occurs?
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1.groupByKey():

➢ Spark needs to move all records with the same key to the same partition.

2.reduceByKey():

➢ Shuffling occurs after local aggregation when Spark needs to move partial 
sums between partitions to calculate the final result.

3.join():

➢ Spark must align keys from two RDDs.

4.distinct():

➢ ensure that duplicate records across partitions are compared and removed.

5.sortByKey():

➢ Spark needs to globally sort data across all partitions.

6.repartition():

➢ redistributing data into a different number of partitions.



Runtime of Shuffling
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Example of Shuffling
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ATMWithdrawal(1, 101, 200)

ATMWithdrawal(2, 102, 150)

ATMWithdrawal(3, 103, 300)
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ATMWithdrawal(3, 103, 400)
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What is Partition?
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Key Properties:

• Partitions never span multiple machines; all data in a partition stays 

on one machine.

• Each machine in the cluster contains one or more partitions.

• The number of partitions is configurable (default = total number of 

cores across executor nodes).

Types of Partitioning:

1. Hash Partitioning

2. Range Partitioning

Grouping all values of key-value pairs with the same key requires collecting all 

key-value pairs with the same key on the same machine.

But how does Spark know which key to put on which machine?



Hash Partitioning
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• Hashing: Spark applies a hash function to 
customerId (e.g., 1, 2, 3) to determine the partition.

• Partitioning: Data with the same hash value goes to 

the same partition. 
o Different customerIds go to different partitions 

based on their hash.

• Result: All records for a specific key are grouped into a 

single partition based on the hash function, ensuring 

efficient distribution



Range Partitioning
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• Spark sorts the keys and divides them into ranges.

• Each partition holds a specific range of keys (e.g., 1-

100 in one partition, 101-200 in another).

• Efficient for ordered data or when you need to 

process data within specific key ranges.

Example:

Withdrawals Data: If customerIds range from 1-1000, Spark splits this into 

partitions like:

• Partition 1: customerId 1-100

• Partition 2: customerId 101-200
• Partition 3: customerId 201-300



Partitioning Data
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There are two ways to create RDDs with specific partitioning: 

1. Call partitionBy on an RDD, providing an explicit Partitioner. 
• Apply partitionBy() and provide an explicit Partitioner (e.g., Hash or Range).

2. Using transformations that return RDDs with specific partitioners



Persisting Partitioned Data
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Problem:

• After partitionBy(), Spark re-shuffles and recomputes the entire RDD 

every time you perform an action (e.g., count(), collect()).

Solution: Persist!

• persist()stores the RDD in memory (or disk) after the first computation.



Partitioner Inheritance
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1. Partitioner from Parent RDD

• Pair RDDs resulting from transformations on a partitioned RDD inherit 

the partitioner (usually Hash) from the parent RDD.

2. Automatically-set Partitioners

Some operations automatically apply partitioners when it makes sense:
• sortByKey: Uses a RangePartitioner by default.

• groupByKey: Uses a HashPartitioner by default.



Automatic Partitioners
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Certain operations on Pair RDDs retain and propagate the 

partitioner from the parent RDD:

1. Cogroup

2. groupWith

3. Join, leftOuterJoin, rightOuterJoin

4. groupByKey

5. reduceByKey, foldByKey,combineByKey

6. partitionBy

7. sortmapValues (if parent has a partitioner)

8. flatMapValues (if parent has a partitioner)

9. filter (if parent has a partitioner)

All other operations will produce a result without a partitioner.



Partitioning Example
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Is this OK? 



Partitioning Example

22

It will be very inefficient! 

Why? The join operation, called each time processNewLogs is invoked, 

does not know anything about how the keys are partitioned in the datasets



Explicit Partitioning Example
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QUESTIONS?
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