Programming for Data Science at Scale

Optimising Distributed Data Processing

THE UNIVERSITY of EDINBURGH

Amir Noohi, Fall 2024

MapReduce – under the hood

What is shuffling?

What happens when you do a groupBy or a groupByKey?

// Create an RDD of (Grade, Student) pairs val students = sc.parallelize(List(("A", "Alice"), ("B", "Bob"), ("A", "Adam"), ("C", "Charlie"), ("B", "Ben"))) // Group students by their grade val groupedStudents = students.groupByKey() // The output of groupByKey is a ShuffledRDD // Type of groupedStudents: RDD[(String, Iterable[String])] = ShuffledRDD[4] at groupByKey at <console>:24

move data from one node to another to be "grouped with" its key.

Shuffling is **expensive** because:

- Network I/O (moving data between nodes).
- Disk I/O when data is too large to fit in memory.
- Serialisation and deserialisation of data.

We have a list of three ATMs from which customers withdraw money. Now, we want to calculate how much each customer has withdrawn in total.

•••

```
// Define a case class for ATM withdrawals
case class ATMWithdrawal(customerId: Int, atmId: Int, amount: Double)
// Create an RDD of customer withdrawals from different ATMs, distributed across
partitions
val withdrawals = sc.parallelize(List(
    ATMWithdrawal(1, 101, 200.0), // Partition 1
    ATMWithdrawal(2, 102, 150.0), // Partition 1
    ATMWithdrawal(2, 102, 150.0), // Partition 2
    ATMWithdrawal(3, 103, 300.0), // Partition 2
    ATMWithdrawal(1, 101, 100.0), // Partition 3
    ATMWithdrawal(2, 102, 50.0), // Partition 3
    ATMWithdrawal(3, 103, 400.0) // Partition 3
    ), 3) // The data is split across 3 partitions
```

What is the solution?

// Group withdrawals by customerId and calculate the total amount per customer val totalWithdrawalsPerCustomer = withdrawals .map(w ⇒ (w.customerId, w.amount)) // Convert to (customerId, amount) tuples .groupByKey() // Group by customerId (Shuffle occurs here) .mapValues(amounts ⇒ amounts.sum) // Sum all amounts for each customer

What might the cluster look like with this data distributed over it?

Which data needs to be moved between nodes?

Can we make it better?

Reduce Instead of Grouping

reduceByKey combines groupByKey and reduction into one operation

Key Advantage: local aggregation

When will shuffle occur?

1. The return type of certain transformations:

org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[1104]

2. Using the function toDebugString to see its execution plan:

Where else shuffling occurs?

1.groupByKey():

> Spark needs to move all records with the same key to the same partition.

2.reduceByKey():

Shuffling occurs after local aggregation when Spark needs to move partial sums between partitions to calculate the final result.

3.join():

Spark must align keys from two RDDs.

4.distinct():

> ensure that duplicate records across partitions are compared and removed.

5.sortByKey():

Spark needs to globally sort data across all partitions.

6.repartition():

redistributing data into a different number of partitions.

Runtime of Shuffling

> val purchasesPerMonthSlowLarge = purchasesRddLarge.map(p => (p.customerId, p.price))

.groupByKey()
.map(p => (p._1, (p._2.size, p._2.sum)))
.count()

purchasesPerMonthSlowLarge: Long = 100000

Command took 15.48s

> val purchasesPerMonthFastLarge = purchasesRddLarge.map(p => (p.customerId, (1, p.price)))
.reduceByKey((v1, v2) => (v1._1 + v2._1, v1._2 + v2._2))
.count()

purchasesPerMonthFastLarge: Long = 100000

Command took 4.65s

What is Partition?

Grouping all values of key-value pairs with the same key requires collecting all key-value pairs with the same key on the same machine.

Key Properties:

- Partitions **never span multiple machines**; all data in a partition stays on one machine.
- Each machine in the cluster contains one or more partitions.
- The **number of partitions** is configurable (default = total number of cores across executor nodes).

But how does Spark know which key to put on which machine?

Types of Partitioning:

- 1. Hash Partitioning
- 2. Range Partitioning

Hash Partitioning

• Hashing: Spark applies a hash function to customerId (e.g., 1, 2, 3) to determine the partition.

p = k.hashCode() % numPartitions

- **Partitioning**: Data with the same hash value goes to the same partition.
 - Different customerIds go to different partitions based on their hash.
- **Result**: All records for a specific key are grouped into a single partition based on the hash function, ensuring **efficient distribution**

Range Partitioning

- Spark sorts the keys and divides them into ranges.
- Each partition holds a **specific range of keys** (e.g., 1-100 in one partition, 101-200 in another).
- Efficient for ordered data or when you need to process data within specific key ranges.

Example:

Withdrawals Data: If customerIds range from 1-1000, Spark splits this into partitions like:

- **Partition 1**: customerId 1-100
- Partition 2: customerId 101-200
- **Partition 3**: customerId 201-300

Partitioning Data

There are two ways to create RDDs with specific partitioning:

- 1. Call partitionBy on an RDD, providing an explicit Partitioner.
 - Apply partitionBy() and provide an explicit Partitioner (e.g., Hash or Range).

2. Using transformations that return RDDs with specific partitioners

Persisting Partitioned Data

Problem:

• After partitionBy(), Spark re-shuffles and recomputes the entire RDD every time you perform an action (e.g., count(), collect()).

Solution: Persist!

• persist() stores the RDD in memory (or disk) after the first computation.

Partitioner Inheritance

1. Partitioner from Parent RDD

 Pair RDDs resulting from transformations on a partitioned RDD inherit the partitioner (usually Hash) from the parent RDD.

2. Automatically-set Partitioners

- Some operations automatically apply partitioners when it makes sense:
 - sortByKey: Uses a RangePartitioner by default.
 - groupByKey: Uses a HashPartitioner by default.

•••

val sortedRDD = rdd.sortByKey() // RangePartitioner is used val groupedRDD = rdd.groupByKey() // HashPartitioner is used

Automatic Partitioners

Certain operations on Pair RDDs **retain and propagate** the partitioner from the parent RDD:

- 1. Cogroup
- 2. groupWith
- 3. Join, leftOuterJoin, rightOuterJoin
- 4. groupByKey
- 5. reduceByKey, foldByKey,combineByKey
- 6. partitionBy
- 7. sortmapValues (if parent has a partitioner)
- 8. flatMapValues (if parent has a partitioner)
- **9. filter** (if parent has a partitioner)

All other operations will produce a result without a partitioner.

Partitioning Example

•••

```
val sc = new SparkContext( ... )
val userData = sc.sequenceFile[UserID, UserInfo]("hdfs:// ... ").persist()
```

```
def processNewlogs(logFileName: String) {
  val events = sc.sequenceFile[UserID, Linklnfo](logFileName)
  val joined = userData join(events) //ROD of (UserID, (UserInfo, Linklnfo))
  val offTopicVisits = joined.filter {
    case (userld, (userlnfo, linklnfo)) ⇒ //Expand the tuple
      !userlnfo.topics.contains(linklnfo.topic)
  }.count()
  println(''Number of visits to non-subscribed topics: '' + offTopicVisi ts)
}
```

Is this OK?

Partitioning Example

It will be very inefficient!

Why? The join operation, called each time processNewLogs is invoked, does not know anything about how the keys are partitioned in the datasets

Explicit Partitioning Example

•••

val userData = sc.sequenceFile[UserID, UserInfo]("hdfs:// ... ")
 .partitionBy(new HashPartitioner(100)) // Create 100 partitions
 .persist()

QUESTIONS?