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Lecture Objectives

* |earn about Ranked IR
* TFIDF
e VSM
* SMART notation

* Implement:
* TFIDF
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Boolean Retrieval

* Thus far, our queries have all been Boolean.
* Documents either: “match” or “no match”.

* Good for expert users with precise understanding of
their needs and the collection.

* Patent search uses sophisticated sets of Boolean queries
and check hundreds of search results

* Not good for the maijority of users.
* Most incapable of writing Boolean queries.

* Most don’t want to go through 1000s of results.
* This is particularly true for web search

* Question: What is the most unused web-search feature?
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(car OR vehicle) AND (motor OR engine) AND NOT (cooler)
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Ranked Retrieval

* Typical queries: free text queries
* Results are “ranked” with respect to a query
* Large result sets are not an issue
* We just show the top k ( = 10) results
* We don’t overwhelm the user
* Criteria:

* Top ranked documents are the most likely to satisfy user’s
query

* Score is based on how well documents match a query
Score(d,q)
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Old Example

* Find documents matching query {ink wink}
1. Load inverted lists for each query word
2. Merge two postings lists - Linear merge

* Apply function for matches

* Boolean: exist / not exist =0 or 1

* Ranked: f(tf, df, length, ....) =0 > 1 Matches
1:£(0,1) = 0.4
ink w——> |3-] 41 5-1 3:f(1,0)=0.3
ink 4:1(1,0) = 0.6
win [ — . .
LT e 5:(1,1) = 0.7
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Function example: Jaccard coeffecient

* a commonly used measure of overlap of two sets A
and B

. |ANB]| D1: He likes to wink, he likes to drink
jaccard(A,B) = s oWl ' !

|AUB| D2: He likes to drink, and drink, and drink

jaccard(A,A) =1
jaccard(A,B) =0, fANB=0
Example:
* D1 u D2 = {he, likes, to, wink, and, drink}
* D1 n D2 = {he, likes, to, drink}
* jaccard(D1,D2) = % = 0.6667
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Jaccard coefficient: Issues

* Does not consider term frequency (how many times a
term occurs in a document)

* |t treats all terms equally!

* How about rare terms in a collection?
more informative than frequent terms.

* He likes to drink, shall “to” == “drink”?

* Needs more sophisticated way of length normalization
 |D1| =3, |D2| = 1000!
*° D1>Q,D2->D

\. THE UNIVERSITY
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Should terms be treated the same?

* Collection of 5 documents (balls = terms)

°Query©..

* Which is the least relevant document?
* Which is the most relevant document?

(D1 D2 H DS H D4 H D5
Q.Q QQ.
OO OO
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TFIDF

* TFIDF:
Term Frequency, Inverse Document Frequency
* tf(t,d):
number of times term t appeared in document d
* Astf(t,d) 1T - importance of tin d 1
* Document about IR, contains “retrieval” more than others
* df(t):
number of documents term t appeared in
* Asdf(d) 1T = importance if t in a collection !l

* “the” appears in many document - not important
* “FT”is not important word in financial times articles

THE UNIVERSITY
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DF, CF, & IDF

* DF # CF (collection frequency)
* cf(t) = total number of occurrences of term ¢ in a collection
e df(t) < N (N: number of documents in a collection)
* cf(t)canbe =N

* DF is more commonly used in IR than CF
* CF is still used

* idf(t): inverse of df{(t)
* Asidf(t) 1T - rare term > importance 77
* idf(t) > measure of the informativeness of t
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DF vs CF

- X v
£ 5 £ =48 <€ T
2/11(|0[|2|[0|[0]|[1]| € D1: He likes to wink, he likes to drink
1(/3/(0|[{2/|/0||0||0| € D2: He likes to drink, and drink, and drink
1/|21||2||1|[0||1]||0| < D3:The thing he likes to drink is ink
1/|1||2(|1|[1|]|0]||0| € D4: The ink he likes to drink is pink
1|/|21||2||1|[1(]|0]||1| < D5: He likes to wink, and drink pink ink
5 5 3 5 2 1 2 DF
6 7 3 6 2 1 2 CF
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IDF: formula
df () = logio(o )
1 t) = 0Jd10
af ()
* Log scale used to dampen the effect of IDF
term __|df) | idf(t) |
* Suppose N = 1 million > c2Purmia -
animal 100 4
sky 1,000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
% THE UNIVERSITY
@Y o EDINBURGH
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TFIDF term weighting

* One the best known term weights schemes in IR
* Increases with the number of occurrences within a
document
* Increases with the rarity of the term in the collection

* Combines TF and IDF to find the weight of terms

Weg = (1 + logqotf (t, d))Xlogm(df( ))

* For a query g and document d, retrieval score f(q,d):

Score(q,d) = z Wi g

teqnd
THE UNIVERSITY
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Document/Term vectors with tfidf
Antony and Cleopatra  Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
[ mercy 1.51 0 1.9 0.12 5.25 0.88 ]
worser 1.37 0 0.1 4.15 0.25 1.95
- Vector Space Model
% THE UNIVERSITY
TBY o EDINBURGH
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Vector Space Model

* Documents and Queries are presented as vectors
* Match (Q,D) = Distance between vectors

* Example: Q= Gossip Jealous o &
* Euclidean Distance? /f /
Distance between the endpoints |
of the two vectors [
* Large for vectors of diff. lengths e 1d3 JEALOUS

* Take a document d and append it to itself. Call this

document d".
* “Semantically” d and d’ have the same content
* Euclidean distance can be quite large

- THE UNIVERSITY
= of EDINBURGH

Angle Instead of Distance

* The angle between the two documents is 0,
corresponding to maximal similarity.

* Key idea: Rank documents according to angle with

query.
* Rank documents in increasing order of the angle with query
* Rank documents in decreasing order of cosine (query,

document)

* Cosine of angle = projection of one
vector on the other

‘e/r“ B
|A| cos@
&% THE UNIVERSITY
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Length Normalization

* A vector can be normalized by dividing each of its
components by its length — for this we use the L, norm:

il = > x?
l

* Dividing a vector by its L, norm makes it a unit (length)
vector (on surface of unit hypersphere)

e Effect on the two documents d and d’ (d appended to
itself) from earlier slide: they have identical vectors

after length-normalization.
* Long and short documents now have comparable weights

\. THE UNIVERSITY
EDINBURGH
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Example
1
* D1= 3] > D], =VI+9+4=374
2
0.267
¢ D1normalized = 0-802]
0.535
3
* D2 = 9] > |DT||, = VO +81+36 = 11.25
6
0.267
¢ D2normalized = 0-802‘
0.535
&
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Cosine “Similarity” (Query, Document)

* g; is the tf-idf weight of term i in 1t #(d)

t?e query / i) ]
* d; is the tf-idf weight of term i in /} Vi

the document o/ \
* For normalized vectors: / % )

e - S i(ds)

cos(4,d)=¢q-d = Zl‘ill q;d; OOL/ 1 ’

* For non- normalized vectors:
d > 14
(CI, ) B C_I) Zl 1qldl

¥ THE UNIVERSITY
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Algorithm
COSINESCORE(q)
1 float Scores[N] =0
2 float Length[N]
3 for each query termt
4 do calculate w¢ g and fetch postings list for t
5 for each pair(d.tf;4) in postings list
6 do Scores[d]+ = wW¢ g X Wt g
7 Read the array Length
8 for each d
9 do Scores[d] = Scores[d]/Length[d|
10 return Top K components of Scores|]
20
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TFIDF Variants

Term frequency Document frequency Normalization
n (natural) tfed n(no) _ _1 J n (none) 1
EE=====a= o ————— (-
Iﬂogmt_hm_) _ 1_+log_(tf:/)J jt (idf) Iogd—fr | c (cosine) L i
————————7 N e e o o - - L VWi twa e wgy ‘
0.5xtfe g : N—df; (Frooted = - =  ——
a (augmented) 0.5+ o) | P (prob idf)  max{0, log =7~} u‘(m:ze:) =1z
1 iftfeg >0 . I
b (boolean) {0 otherwice b (byte size) 1/CharLength®,
a<l
1+log(tfe.q)
L (log ave) 1+|°E(3V9té;(:fz.d))

* Many search engines allow for different weightings for
queries vs. documents

* SMART Notation: use notation ddd.qqq, using the
acronyms from the table

* Avery standard weighting scheme is: Inc.ltc

Walid Magdy, TTDS 2024/2025
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For Lab and CW

Term frequency Document frequency Normalization
e —————
nga_ijri:)__ __t%d__l_ _ |an_) _ 1] n (none 1 ]
| lpm=-=== _——
11 (logarithm) 1 + log(tft.q) | |t (idf) log M- ar. | ¢ (cosine) N
e i e N o o = = = -’ v wlz+wzz+ A wiy
0.5xtf, N— dt‘ ;
a (augmented) 0.5+ —f—’ g p (prob idf) max{0,log =3~} | u (pivoted 1/u
maxe(tfe,q) unique)
1 iftf;g >0 . o
b (boolean) {0 otherwise b (byte size) (ll/ghlarLength ,

1-+log(tfe.q)

L (log ave) THlog(avercq(te.g))

“OR” operator, then:
Score(q,d) = z (1 + logyotf (t,d))Xlogyo (==

tegnd

df(t))

8% THE UNIVERSITY
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Summary of Steps:

Return the top K (e.g., K= 10) to the user

Walid Magdy, TTDS 2024/2025

* Represent the query as a weighted tf-idf vector
Represent each document as a weighted tf-idf vector

Compute the cosine similarity score for the query
vector and each document vector

Rank documents with respect to the query by score

\. THE UNIVERSITY
EDINBURGH
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Retrieval Output
* For a query q,, the output would be a list of documents
ranked according to the score(q,,d)
* Possible output format:
1, 710, 0.9234
1, 213, 0.7678
1, 103, 0.6761
1, 13 0.6556
/1, 505\ 0. 4301\
Query id document id score
A% THE UNIVERSITY
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Resources

* Text book 1: Intro to IR, Chapter 6.2 - 6.4
* Text book 2: IR in Practice, Chapter 7

* Lab 3

THE UNIVERSITY
of EDINBURGH

10/9/24

13



