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Is it possible to design a polynomial-time algorithm for every 
problem?

Are there problems for which polynomial-time algorithms do 
not exist?
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Intractable problems
Definition: A problem is called intractable if we do now know 
of any efficient algorithm that solves it. 

Ideal definition: A problem is called intractable if it is not 
possible to design any efficient algorithm that solves it. 

For most problems, we cannot have the ideal definition.

There might be some very clever algorithm hiding out there.

Some problems were believed to not be solvable efficient 
for many years, but then they were proven to be tractable.
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Evidence of intractability
Definition: A problem is called intractable if we do now know of any efficient 
algorithm that solves it.

Ideal definition: A problem is called intractable if it is not possible to design 
any efficient algorithm that solves it. 

How can we convince ourselves that it is not possible to design efficient 
algorithms for Problem A?

We tried for a long time and we didn’t manage to come up with one.

A lot of people that are more clever and experienced than us tried for a long 
time and did not manage.

If there was an efficient algorithm for Problem A, we could use it to solve 
many other problems for which we don’t have efficient algorithms. 
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Polynomial Time Reduction
We are given a problem A that we want to solve.

We can reduce solving problem A to solving some other 
problem B.

Assume that we had an algorithm ALGB for solving problem B.

We can construct an algorithm ALGA for solving problem A, 
which uses calls to the algorithm ALGB  as a subroutine.

If ALGA is a polynomial time algorithm, then this is a 
polynomial time reduction.



Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff… 

Do stuff … 

… 
 

ALGA

ALGB

ALGB



Notation

When problem A reduces to problem B in polynomial time, 
we write  
 
A ≤p B 
 
We often say “there is a polynomial time reduction from A to 
B”.
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Evidence of Intractability

Contrapositive: Assume that there is a problem A for which it is 
unlikely that there is a polynomial time algorithm that solves it.

If I come up with a polynomial time reduction A ≤p B, it is also 
unlikely that there is a polynomial time algorithm that solves B.

B is “at least as hard to solve as” A, because if I could solve B, 
I could also solve A.

Idea: If we want to provide strong evidence that a problem B 
cannot be solved by an efficient algorithm, we need to reduce 
another problem A to it, for which there is strong evidence that 
it cannot be solved by an efficient algorithm.  
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Computational classes

Every problem for which there is a known polynomial time 
algorithm is in the computational class P.

Searching, sorting, interval scheduling, graph traversal, … 

The class P contains computational problems that can be 
solved in polynomial time.

We also say that they can be solved efficiently.
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P

contains all problems that 
can be solved in polynomial time.
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The class NP
Stands for “non deterministic polynomial time”.

Problems that can be solved in polynomial time by a non-
deterministic Turing machine. 

More intuitive definition: 

Problems such that, if a solution is given, it can be checked 
that it is indeed a solution in polynomial time.

Efficiently verifiable.
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Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= 
true).

Computational problem 3SAT : Decide if the input formula φ has a satisfying 
assignment.

3 SAT is in NP (why?)
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contains all problems for which 
a solution can be verified in  

polynomial time.
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NP-hardness

A problem B is NP-hard if for every problem A in NP, it holds 
that A ≤p B.


To prove NP-hardness, it seems that we have to construct a 
reduction from every problem A in NP. 


This is not very useful! 
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A problem B is NP-complete if

It is in NP.

i.e., it has a polynomial-time verifiable solution.

It is NP-hard.

i.e., every problem in NP can be efficiently reduced to it.
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NP-completeness
Assume problem P is NP-complete.

Then every problem in NP is efficiently reducible to P. 
(why?)

To prove NP-hardness of problem B, it seems that we have 
to construct a reduction from every problem A in NP. 

Actually, it suffices to construct a reduction from P to B.

A reduction from any other problem A to B goes “via” P.



NP-hardness via P
Problem A1 Problem P Problem B

Problem A2

Problem Ak
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NP-completeness

Assume problem P is NP-complete.

This all works if we have an NP-complete problem to start 
with.
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A CNF formula with m clauses and k literals. 
 
φ = (x1 ⌵ x5 ⌵ x3 ) ⌃ (x2 ⌵ x6 ⌵ ⌝x5 ) ⌃ … ⌃  (x3 ⌵ x8 ⌵ x12 )

(“An AND of ORs”).

Each clause has three literals.

Truth assignment: A value in {0,1} for each variable xi.

Satisfying assignment: A truth assignment which makes the formula 
evaluate to 1 (= true).

Computational problem 3SAT : Decide if the input formula φ has a 
satisfying assignment.
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3 SAT is NP-complete

3 SAT is in NP. 

3 SAT is NP-hard.

Remark: 


The first problem shown to be NP-complete was the SAT 
problem (more general than 3 SAT, the Cook-Levin 
Theorem), and this reduces to 3SAT.
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Proving NP-completeness
Suppose that you are given a problem A and you want to 
prove that it is NP-complete.

First, prove that A is in NP.


Usually by observing that a solution is efficiently 
checkable.

Then prove that A is NP-hard.


Construct a polynomial time reduction from some NP-
complete problem P.
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Reduction strategies

The idea is to find a problem that looks similar to the one we 
are trying to prove NP-hardness for.

Try to think of reductions you have seen in the past. 

This takes time!



NP-completeness,  
a taxonomy

Independent Set 
Set Packing

Vertex Cover 
Set Cover

3D-Matching 
Graph Colouring

Hamiltonian Cycle 
Hamiltonian Path 

Traveling Salesman

Subset Sum 
Knapsack 3 SAT

Packing problems Covering problems Partitioning problems

Sequencing problems Numerical problems Constraint Satisfaction  
problems
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The effect of NP-hardness
Imagine that you have a new favourite problem P.

You try to design a polynomial-time algorithm for it but you find it hard to do 
so.

Then you discover that one of all of these NP-complete problems can be 
reduced to it. 

This means that if you succeeded in your quest, you would solve all of these 
problems in polynomial-time.

That would mean that you are smarter than generations of researchers and 
pretty much anyone else that has studied computer science ever.

I don’t know about you, but I would probably be convinced that I am not going 
to come up with a polynomial-time algorithm!
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I can use heuristics or approximation algorithms that don’t 
solve the problem exactly, but approximately. 

I can formulate the problem as an ILP and ask my clever 
solver software to solve it. 

If you would like to know more, talk to 
your local lecturer.


