
Algorithms and Data Structures
NP-Completeness

(non-examinable)

Running time hierarchy

O(log n) O(n) O(n log n) O(n2) O(n↵)
O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm

does not even

read the

whole input.

The algorithm

accesses the

input only

a constant

number of

times.

The algorithm

splits the inputs

into two pieces

of similar size,

solves each part

and merges the

solutions.

The algorithm

considers pairs

of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential

Polynomial time

Running time hierarchy

O(log n) O(n) O(n log n) O(n2) O(n↵)
O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm

does not even

read the

whole input.

The algorithm

accesses the

input only

a constant

number of

times.

The algorithm

splits the inputs

into two pieces

of similar size,

solves each part

and merges the

solutions.

The algorithm

considers pairs

of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential

Efficient algorithms

Efficient algorithms

An algorithm is typically called efficient if it runs in
polynomial time.

Efficient algorithms

An algorithm is typically called efficient if it runs in
polynomial time.

For most of the problems we encountered in this course, we
were able to design polynomial time algorithms.

Efficient algorithms

An algorithm is typically called efficient if it runs in
polynomial time.

For most of the problems we encountered in this course, we
were able to design polynomial time algorithms.

What was the exception?

Efficient algorithms

Efficient algorithms

Is it possible to design a polynomial-time algorithm for every
problem?

Efficient algorithms

Is it possible to design a polynomial-time algorithm for every
problem?

Are there problems for which polynomial-time algorithms do
not exist?

Intractable problems

Intractable problems
Definition: A problem is called intractable if we do now know
of any efficient algorithm that solves it.

Intractable problems
Definition: A problem is called intractable if we do now know
of any efficient algorithm that solves it.

Ideal definition: A problem is called intractable if it is not
possible to design any efficient algorithm that solves it.

Intractable problems
Definition: A problem is called intractable if we do now know
of any efficient algorithm that solves it.

Ideal definition: A problem is called intractable if it is not
possible to design any efficient algorithm that solves it.

For most problems, we cannot have the ideal definition.

Intractable problems
Definition: A problem is called intractable if we do now know
of any efficient algorithm that solves it.

Ideal definition: A problem is called intractable if it is not
possible to design any efficient algorithm that solves it.

For most problems, we cannot have the ideal definition.

There might be some very clever algorithm hiding out there.

Intractable problems
Definition: A problem is called intractable if we do now know
of any efficient algorithm that solves it.

Ideal definition: A problem is called intractable if it is not
possible to design any efficient algorithm that solves it.

For most problems, we cannot have the ideal definition.

There might be some very clever algorithm hiding out there.

Some problems were believed to not be solvable efficient
for many years, but then they were proven to be tractable.

Evidence of intractability
Definition: A problem is called intractable if we do now know of any efficient
algorithm that solves it.

Ideal definition: A problem is called intractable if it is not possible to design
any efficient algorithm that solves it.

Evidence of intractability
Definition: A problem is called intractable if we do now know of any efficient
algorithm that solves it.

Ideal definition: A problem is called intractable if it is not possible to design
any efficient algorithm that solves it.

How can we convince ourselves that it is not possible to design efficient
algorithms for Problem A?

Evidence of intractability
Definition: A problem is called intractable if we do now know of any efficient
algorithm that solves it.

Ideal definition: A problem is called intractable if it is not possible to design
any efficient algorithm that solves it.

How can we convince ourselves that it is not possible to design efficient
algorithms for Problem A?

We tried for a long time and we didn’t manage to come up with one.

Evidence of intractability
Definition: A problem is called intractable if we do now know of any efficient
algorithm that solves it.

Ideal definition: A problem is called intractable if it is not possible to design
any efficient algorithm that solves it.

How can we convince ourselves that it is not possible to design efficient
algorithms for Problem A?

We tried for a long time and we didn’t manage to come up with one.

A lot of people that are more clever and experienced than us tried for a long
time and did not manage.

Evidence of intractability
Definition: A problem is called intractable if we do now know of any efficient
algorithm that solves it.

Ideal definition: A problem is called intractable if it is not possible to design
any efficient algorithm that solves it.

How can we convince ourselves that it is not possible to design efficient
algorithms for Problem A?

We tried for a long time and we didn’t manage to come up with one.

A lot of people that are more clever and experienced than us tried for a long
time and did not manage.

If there was an efficient algorithm for Problem A, we could use it to solve
many other problems for which we don’t have efficient algorithms.

Polynomial Time Reduction
We are given a problem A that we want to solve.

Polynomial Time Reduction
We are given a problem A that we want to solve.

We can reduce solving problem A to solving some other
problem B.

Polynomial Time Reduction
We are given a problem A that we want to solve.

We can reduce solving problem A to solving some other
problem B.

Assume that we had an algorithm ALGB for solving problem B.

Polynomial Time Reduction
We are given a problem A that we want to solve.

We can reduce solving problem A to solving some other
problem B.

Assume that we had an algorithm ALGB for solving problem B.

We can construct an algorithm ALGA for solving problem A,
which uses calls to the algorithm ALGB as a subroutine.

Polynomial Time Reduction
We are given a problem A that we want to solve.

We can reduce solving problem A to solving some other
problem B.

Assume that we had an algorithm ALGB for solving problem B.

We can construct an algorithm ALGA for solving problem A,
which uses calls to the algorithm ALGB as a subroutine.

If ALGA is a polynomial time algorithm, then this is a
polynomial time reduction.

Pictorially
Problem A Problem B

ALGB

Do stuff …

Do stuff …

Do stuff…

Do stuff …

…

ALGA

ALGB

ALGB

Notation

When problem A reduces to problem B in polynomial time,
we write  
 
A ≤p B 
 
We often say “there is a polynomial time reduction from A to
B”.

How to work with reductions

How to work with reductions
Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

How to work with reductions
Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

How to work with reductions
Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

How to work with reductions
Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

How to work with reductions
Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

B is “at least as hard to solve as” A, because if I could solve B, I
could also solve A.

Evidence of Intractability

Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

B is “at least as hard to solve as” A, because if I could solve B,
I could also solve A.

Evidence of Intractability

Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

B is “at least as hard to solve as” A, because if I could solve B,
I could also solve A.

Idea: If we want to provide strong evidence that a problem B
cannot be solved by an efficient algorithm, we need to reduce
another problem A to it, for which there is strong evidence that
it cannot be solved by an efficient algorithm.

Computational classes

Computational classes

Every problem for which there is a known polynomial time
algorithm is in the computational class P.

Computational classes

Every problem for which there is a known polynomial time
algorithm is in the computational class P.

Searching, sorting, interval scheduling, graph traversal, …

Computational classes

Every problem for which there is a known polynomial time
algorithm is in the computational class P.

Searching, sorting, interval scheduling, graph traversal, …

The class P contains computational problems that can be
solved in polynomial time.

Computational classes

Every problem for which there is a known polynomial time
algorithm is in the computational class P.

Searching, sorting, interval scheduling, graph traversal, …

The class P contains computational problems that can be
solved in polynomial time.

We also say that they can be solved efficiently.

The landscape of complexity

P

contains all problems that 
can be solved in polynomial time.

The class NP

The class NP
Stands for “non deterministic polynomial time”.

The class NP
Stands for “non deterministic polynomial time”.

Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

The class NP
Stands for “non deterministic polynomial time”.

Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

More intuitive definition:

The class NP
Stands for “non deterministic polynomial time”.

Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

More intuitive definition:

Problems such that, if a solution is given, it can be checked
that it is indeed a solution in polynomial time.

The class NP
Stands for “non deterministic polynomial time”.

Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

More intuitive definition:

Problems such that, if a solution is given, it can be checked
that it is indeed a solution in polynomial time.

Efficiently verifiable.

3 SAT
A CNF formula with m clauses and k literals. 
 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

(“An AND of ORs”).

Each clause has three literals.

3 SAT
A CNF formula with m clauses and k literals. 
 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

(“An AND of ORs”).

Each clause has three literals.

Truth assignment: A value in {0,1} for each variable xi.

3 SAT
A CNF formula with m clauses and k literals. 
 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

(“An AND of ORs”).

Each clause has three literals.

Truth assignment: A value in {0,1} for each variable xi.

Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (=
true).

3 SAT
A CNF formula with m clauses and k literals. 
 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

(“An AND of ORs”).

Each clause has three literals.

Truth assignment: A value in {0,1} for each variable xi.

Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (=
true).

Computational problem 3SAT : Decide if the input formula φ has a satisfying
assignment.

3 SAT
A CNF formula with m clauses and k literals. 
 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

(“An AND of ORs”).

Each clause has three literals.

Truth assignment: A value in {0,1} for each variable xi.

Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (=
true).

Computational problem 3SAT : Decide if the input formula φ has a satisfying
assignment.

3 SAT is in NP (why?)

The landscape of complexity

P

contains all problems that 
can be solved in polynomial time.

The landscape of complexity

 NP P

contains all problems that 
can be solved in polynomial time.

contains all problems for which 
a solution can be verified in  

polynomial time.

How to work with reductions
Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

B is “at least as hard to solve as” A, because if I could solve B, I
could also solve A.

How to work with reductions
Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

B is “at least as hard to solve as” A, because if I could solve B, I
could also solve A.

NP-hardness
A problem B is NP-hard if for every problem A in NP, it holds
that A ≤p B.

If every problem in NP is “polynomial time reducible to B”.

This captures the fact that B is at least as hard as the
hardest problems in NP.

NP-hardness

A problem B is NP-hard if for every problem A in NP, it holds
that A ≤p B.

To prove NP-hardness, it seems that we have to construct a
reduction from every problem A in NP.

This is not very useful!

NP-completeness

A problem B is NP-complete if

NP-completeness

A problem B is NP-complete if

It is in NP.

NP-completeness

A problem B is NP-complete if

It is in NP.

i.e., it has a polynomial-time verifiable solution.

NP-completeness

A problem B is NP-complete if

It is in NP.

i.e., it has a polynomial-time verifiable solution.

It is NP-hard.

NP-completeness

A problem B is NP-complete if

It is in NP.

i.e., it has a polynomial-time verifiable solution.

It is NP-hard.

i.e., every problem in NP can be efficiently reduced to it.

NP-completeness

NP-completeness
Assume problem P is NP-complete.

NP-completeness
Assume problem P is NP-complete.

Then every problem in NP is efficiently reducible to P.
(why?)

NP-completeness
Assume problem P is NP-complete.

Then every problem in NP is efficiently reducible to P.
(why?)

To prove NP-hardness of problem B, it seems that we have
to construct a reduction from every problem A in NP.

NP-completeness
Assume problem P is NP-complete.

Then every problem in NP is efficiently reducible to P.
(why?)

To prove NP-hardness of problem B, it seems that we have
to construct a reduction from every problem A in NP.

Actually, it suffices to construct a reduction from P to B.

NP-completeness
Assume problem P is NP-complete.

Then every problem in NP is efficiently reducible to P.
(why?)

To prove NP-hardness of problem B, it seems that we have
to construct a reduction from every problem A in NP.

Actually, it suffices to construct a reduction from P to B.

A reduction from any other problem A to B goes “via” P.

NP-hardness via P
Problem A1 Problem P Problem B

Problem A2

Problem Ak

NP-completeness

NP-completeness

Assume problem P is NP-complete.

NP-completeness

Assume problem P is NP-complete.

This all works if we have an NP-complete problem to start
with.

3 SAT
A CNF formula with m clauses and k literals. 
 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

(“An AND of ORs”).

Each clause has three literals.

3 SAT
A CNF formula with m clauses and k literals. 
 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

(“An AND of ORs”).

Each clause has three literals.

Truth assignment: A value in {0,1} for each variable xi.

3 SAT
A CNF formula with m clauses and k literals. 
 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

(“An AND of ORs”).

Each clause has three literals.

Truth assignment: A value in {0,1} for each variable xi.

Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

3 SAT
A CNF formula with m clauses and k literals. 
 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

(“An AND of ORs”).

Each clause has three literals.

Truth assignment: A value in {0,1} for each variable xi.

Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

Computational problem 3SAT : Decide if the input formula φ has a
satisfying assignment.

3 SAT is NP-complete

3 SAT is NP-complete

3 SAT is in NP.

3 SAT is NP-complete

3 SAT is in NP.

3 SAT is NP-hard.

3 SAT is NP-complete

3 SAT is in NP.

3 SAT is NP-hard.

Remark:

The first problem shown to be NP-complete was the SAT
problem (more general than 3 SAT, the Cook-Levin
Theorem), and this reduces to 3SAT.

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SAT

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover

3SAT

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

3SAT

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing

3SAT

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3SAT

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3SAT

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring

3SAT

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle

3SAT

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

3SAT

The class NP

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

3SAT

NP-completeness

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

3SAT

NP-completeness

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

3SAT

NP-completeness

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

3SAT

NP-completeness

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

3SAT

NP-completeness

Sorting
Minimum Spanning Tree

Longest Common Subsequence

Chain Matrix Multiplication
Matrix Multiplication

Polynomial Multiplication

SATSubset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

3SAT

Proving NP-completeness

Proving NP-completeness
Suppose that you are given a problem A and you want to
prove that it is NP-complete.

Proving NP-completeness
Suppose that you are given a problem A and you want to
prove that it is NP-complete.

First, prove that A is in NP.

Usually by observing that a solution is efficiently
checkable.

Proving NP-completeness
Suppose that you are given a problem A and you want to
prove that it is NP-complete.

First, prove that A is in NP.

Usually by observing that a solution is efficiently
checkable.

Then prove that A is NP-hard.

Construct a polynomial time reduction from some NP-
complete problem P.

Reduction strategies

Reduction strategies

The idea is to find a problem that looks similar to the one we
are trying to prove NP-hardness for.

Reduction strategies

The idea is to find a problem that looks similar to the one we
are trying to prove NP-hardness for.

Try to think of reductions you have seen in the past.

Reduction strategies

The idea is to find a problem that looks similar to the one we
are trying to prove NP-hardness for.

Try to think of reductions you have seen in the past.

This takes time!

NP-completeness,
a taxonomy

Independent Set
Set Packing

Vertex Cover
Set Cover

3D-Matching
Graph Colouring

Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

Subset Sum
Knapsack 3 SAT

Packing problems Covering problems Partitioning problems

Sequencing problems Numerical problems Constraint Satisfaction  
problems

The effect of NP-hardness

The effect of NP-hardness
Imagine that you have a new favourite problem P.

The effect of NP-hardness
Imagine that you have a new favourite problem P.

You try to design a polynomial-time algorithm for it but you find it hard to do
so.

The effect of NP-hardness
Imagine that you have a new favourite problem P.

You try to design a polynomial-time algorithm for it but you find it hard to do
so.

Then you discover that one of all of these NP-complete problems can be
reduced to it.

The effect of NP-hardness
Imagine that you have a new favourite problem P.

You try to design a polynomial-time algorithm for it but you find it hard to do
so.

Then you discover that one of all of these NP-complete problems can be
reduced to it.

This means that if you succeeded in your quest, you would solve all of these
problems in polynomial-time.

The effect of NP-hardness
Imagine that you have a new favourite problem P.

You try to design a polynomial-time algorithm for it but you find it hard to do
so.

Then you discover that one of all of these NP-complete problems can be
reduced to it.

This means that if you succeeded in your quest, you would solve all of these
problems in polynomial-time.

That would mean that you are smarter than generations of researchers and
pretty much anyone else that has studied computer science ever.

The effect of NP-hardness
Imagine that you have a new favourite problem P.

You try to design a polynomial-time algorithm for it but you find it hard to do
so.

Then you discover that one of all of these NP-complete problems can be
reduced to it.

This means that if you succeeded in your quest, you would solve all of these
problems in polynomial-time.

That would mean that you are smarter than generations of researchers and
pretty much anyone else that has studied computer science ever.

I don’t know about you, but I would probably be convinced that I am not going
to come up with a polynomial-time algorithm!

My problem is NP-hard,
what can I do?

My problem is NP-hard,
what can I do?

Don’t give up hope just yet:

My problem is NP-hard,
what can I do?

Don’t give up hope just yet:

NP-hardness is a worst-case impossibility.

My problem is NP-hard,
what can I do?

Don’t give up hope just yet:

NP-hardness is a worst-case impossibility.

The problem might be efficiently solvable in the average
case, or on typical instances encountered in practice.

My problem is NP-hard,
what can I do?

Don’t give up hope just yet:

NP-hardness is a worst-case impossibility.

The problem might be efficiently solvable in the average
case, or on typical instances encountered in practice.

I can use heuristics or approximation algorithms that don’t
solve the problem exactly, but approximately.

My problem is NP-hard,
what can I do?

Don’t give up hope just yet:

NP-hardness is a worst-case impossibility.

The problem might be efficiently solvable in the average
case, or on typical instances encountered in practice.

I can use heuristics or approximation algorithms that don’t
solve the problem exactly, but approximately.

I can formulate the problem as an ILP and ask my clever
solver software to solve it.

My problem is NP-hard,
what can I do?

Don’t give up hope just yet:

NP-hardness is a worst-case impossibility.

The problem might be efficiently solvable in the average
case, or on typical instances encountered in practice.

I can use heuristics or approximation algorithms that don’t
solve the problem exactly, but approximately.

I can formulate the problem as an ILP and ask my clever
solver software to solve it.

If you would like to know more, talk to
your local lecturer.

