
INFR10052 Algorithms and Data Structures University of Edinburgh

ADS Tutorial 8 Solutions

Instructor: Aris Filos-Ratsikas TA: Kat Molinet

November 25, 2024

Problem 1

Consider the Matrix Chain Multiplication problem in which we wish to compute the product A1 ·A2 ·A3 ·A4

where A1, A2, A3, A4 are rectangular matrices with dimensions 5×10, 10×5, 5×3, 3×9 respectively. Assume
that the time required to multiply two matrices of dimensions p× q and q × r is pqr.

Apply the dynamic programming algorithm Matrix-Chain-Order to compute the optimal parenthe-
sization on this input. Show the table M (that contains the costs of the optimal solutions to subproblems)
and the table S (that contains the optimal splits) at the end of the execution of the algorithm. Your solution
should include writing the recurrence relation for computing M [i, j] for i < j.

Solution

Our first step is to set up the 4×4 dynamic programming tables M and S. Each entry M(i, j) represents the
minimum number of multiplications needed to compute Ai · · · · ·Aj , while each entry S(i, j) in S represents
the optimal “splitting” value k, allowing us to actually reconstruct the optimal parenthesization once we’ve
filled in our dynamic programming table M .

To initialize M , our first observation is that for any i > j, the value M(i, j) is undefined since it doesn’t
make sense to consider a “backwards” sequence of matrices. What about when i = j? Well, when i = i, the
value M(i, i) represents the number of multiplications needed to simplify the single-matrix sequence Ai. But
this is already simplified, and so no multiplications are required. Thus, our diagonal entries are all initialized
to zero in M .

Initializing table M:

i:

j: 1 2 3 4

1 0

2 - 0

3 - - 0

4 - - - 0

To fill out the remainder of our table M , we use the formula from lecture for M(i, j) when i < j:

M(i, j) = min
i≤k<j

{
M(i, k) +M(k + 1, j) + pi−1 · pk · pj

}
.

Where does this formula come from? Informally, we can think of k as our “splitting point” in a sequence
of matrix multiplications – all the matrices before the splitting point are grouped together associatively

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 1



INFR10052 Algorithms and Data Structures University of Edinburgh

and multiplied out into a single matrix of size pi−1 × pk, and all the matrices after the splitting point are
similarly multiplied together into a single size pk × pj matrix. These two groups of matrix products can
then be multiplied together in pi−1 · pk · pj multiplications. In a solution which is optimal (in the sense that
it parenthesizes the sequence in a way which minimizes the number of multiplications needed), the groups
before and after the splitting point will be grouped/parenthesized in an optimal way – otherwise, the overall
solution could be made better. The number of mutliplications needed to optimally multiply the matrices
before the split is, by definition, M(i, k); and similarly, M(k + 1, j) for the matrices after the split. Thus,
the number of multiplications needed for a split at k is M(i, k) +M(k + 1, j) + pi−1 · pk · pj . Finding the
splitting point k which minimizes this value gives us the general recursive formula for M(i, j).

Now all we need to do is apply this formula to our specific example, noting in table S the splitting point
/ k-value which minimizes our value M(i, j) at each entry (i, j) in M . For example, for the entries to the
immediate right of the diagonal row of zeroes in M , we have:

M(1, 2) = min
1≤k<2

{
M(1, k) +M(k + 1, 2) + p0 · pk · p2

}
= M(1, 1) +M(2, 2) + 5 · 10 · 5 = 250

M(2, 3) = min
2≤k<3

{
M(2, k) +M(k + 1, 3) + p1 · pk · p3

}
= M(2, 2) +M(3, 3) + 10 · 5 · 3 = 150

M(3, 4) = min
3≤k<4

{
M(3, k) +M(k + 1, 4) + p2 · pk · p4

}
= M(3, 3) +M(4, 4) + 5 · 3 · 9 = 135,

using the fact that, according to our initialized table M , M(i, i) = 0. This gives us the following updated
tables M and S:

Updating tables M (left) and S (right):

i:

j: 1 2 3 4

1 0 250

2 - 0 150

3 - - 0 135

4 - - - 0

i:

j: 1 2 3 4

1 - 1

2 - - 2

3 - - - 3

4 - - - -

Continuing to work away from the diagonal, we compute M(1, 3) and M(2, 4):

M(1, 3) = min
1≤k<4

{
M(1, k) +M(k + 1, 3) + p0 · pk · p3

}
= min

{
M(1, 1) +M(2, 3) + 5 · 10 · 3, M(1, 2) +M(3, 3) + 5 · 5 · 3

}
= min

{
0 + 150 + 150 = 300, 250 + 0 + 75 = 325

}
= 300, with k = 1

And similarly, we can compute that for (2, 4), we have M = 585 for k = 2 and M = 420 for k = 3. Thus,
we conclude that splitting on k = 3 to get (A2A3)A4 in 420 multiplications is the best way of grouping the
subsequence A2A3A4 (as opposed to the other option A2(A3A4), when k = 2).

Finally, we can compute the final cell, (1, 4), which tells us the minimal number of multiplications needed
to multiply out the entire sequence of matrices A1A2A3A4. Once again applying our recursive formula for
M(i, j), we get that M = 870 when k = 1, 610 when k = 2, and 435 when k = 3. Since 435 is the best, we
record in in our table M , and update table S to note that we split on k = 3. At the end of the process, we
get the following dynamic programming tables M and S:

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 2



INFR10052 Algorithms and Data Structures University of Edinburgh

Updating tables M (left) and S (right):

i:

j: 1 2 3 4

1 0 250 300 435

2 - 0 150 420

3 - - 0 135

4 - - - 0

i:

j: 1 2 3 4

1 - 1 1 3

2 - - 2 3

3 - - - 3

4 - - - -

So we know that we can compute the matrix product A1A2A3A4 using 435 multiplications. But how
should we parenthisize our sequence to accomplish this? This is where the table S comes in. Looking at
entry (1, 4) of S, we see that we split our sequence A1A2A3A4 at k = 3; i.e., in the optimal solution, we
will have (A1A2A3)A4. But in what order should we multiply A1A2A3? Once again, we turn to the table
S to find that for (1, 3), the best splitting place is at k = 1; i.e., we should multiply in the following order:
A1(A2A2). Putting everything together, we have (A1(A2A3))A4 as our optimal parenthesization of our
matrices, requiring 435 multiplications.

Problem 2

A contiguous subsequence of length k a sequence S is a subsequence which consists of k consecutive elements
of S. For instance, if S is 1, 2, 3,−11, 10, 6,−10, 11,−5, then 3,−11, 10 is a contiguous subsequence of S
of length 3. Give an algorithm based on dynamic programming that, given a sequence S of n numbers as
input, runs in linear time and outputs the contiguous subsequence of S of maximum sum. Assume that a
subsequence of length 0 has sum 0. For the example above, the answer of the algorithm would be 10, 6.−10, 11
with a sum of 17.

Solution

Let a1a2 . . . an be the sequence S. We will use dynamic programming to design an algorithm that solves
the contiguous subsequence problem. Let M(j) be the optimal solution (the length of the subsequence of
maximum sum) ending at position j. By definition, we have that M(0) = 0. We have the following relation:

M [j + 1] = max{M [j] + aj+1, 0},

with M [1] = max{a1, 0}. To find the contiguous subsequence S∗ of maximum sum, we operate as follows.
First, we find the element i∗ for which M [i∗] is maximised. This can be done in polynomial time, by
computing the partial sums and storing them in an array (similarly to the approach in the weighted interval
scheduling problem). S∗ will end at i∗. The beginning of S∗ will be the largest j ≤ i∗ for which M [j−1] = 0,
as extending the subsequence to start before j will only decrease the sum. If there is no such j, then S∗

starts at the beginning of S.

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 3


