Programming for Data Science at Scale

Distributed Machine Learning

Amir Noohi, Fall 2024

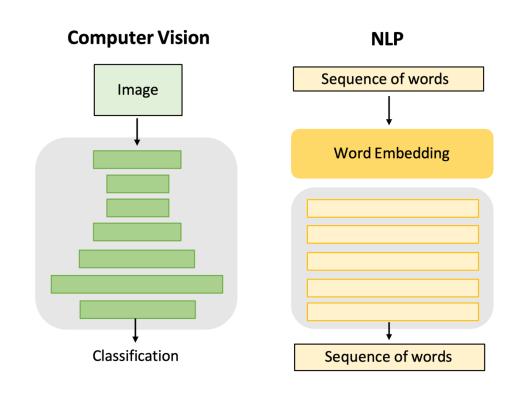
Many ML applications are emerging

Deep neural networks

- Better accuracy
- High computation cost
- Gradient-based training

Diverse applications

- Natural language processing
- Deep reinforcement learning
- Graph neural networks
- ...



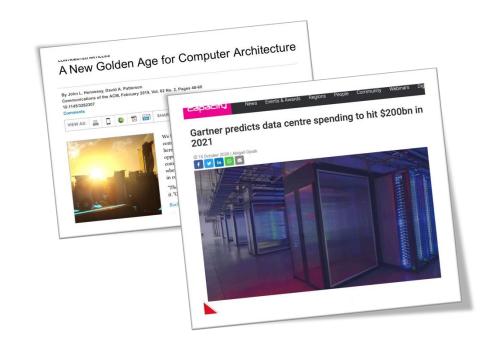
Massive computational power is available

Heterogeneous processors

- CPUs, GPUs and TPUs
- 10 100x acceleration

Global data centres

- Easy access to PB-scale data
- 100,000s machines



Three key factors that drive AI booming: Algorithms, Hardware, Data

Motivation behind Distributed ML

ML frameworks: A new category of system software

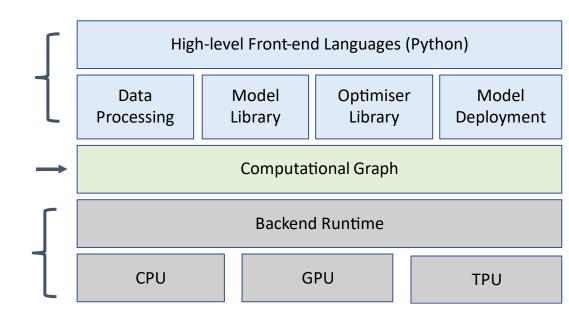
	Neural Networks	Automatic Differentiation	Un/semi- structured data management	Training & Inference	Heterogenous Processors	Distributed Execution
Neural network libraries (Theano, Caffe)	~	~	×	×	~	×
Data parallel systems (Spark, Giraph)	×	×	×	×	×	~
ML framework (PyTorch, TensorFlow)	~	~	~	~	~	~

System architectures of ML frameworks

Design Goals

- 1. Programming abstraction: Supporting ML in different applications
- 2. Execution engine: Enable gradient-based computation & parallelise computation
- 3. Hardware runtime: utilise all heterogeneous processors

Architecture



ML framework programming abstraction

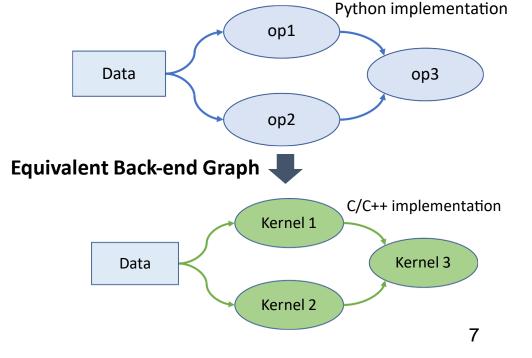
An unified programming abstraction for different ML applications (DNNs, GNNs, DRLs, ...)

Front-end language: Python

- Simple and flexible
- Poor performance
- Global Interpreter Lock (GIL)

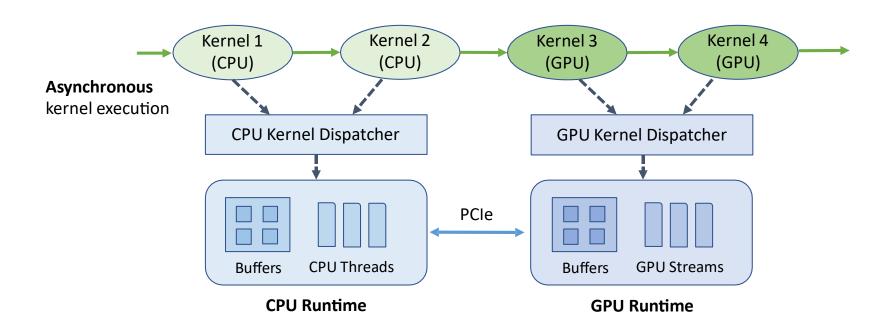
Back-end language: C/C++

- Hardware-friendly
- Excellent performance

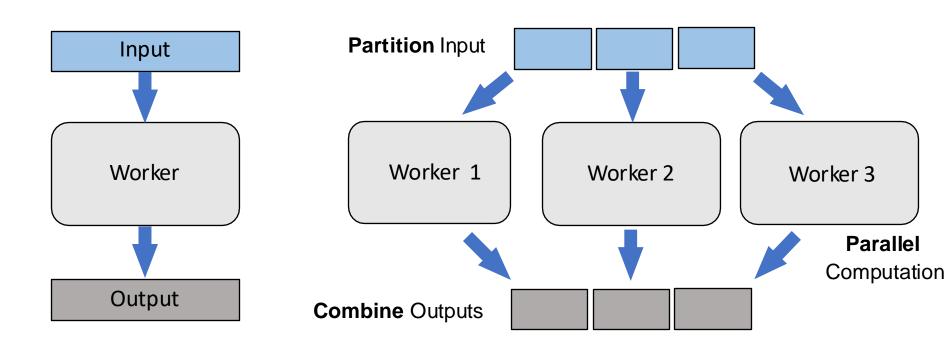


Using heterogenous processors

Operators in ML models have execution kernels for CPUs and GPUs



Distributed Multi worker Execution



(a) Single-worker Execution

(b) Distributed Multi-worker Execution

Why Distributed ML Systems?

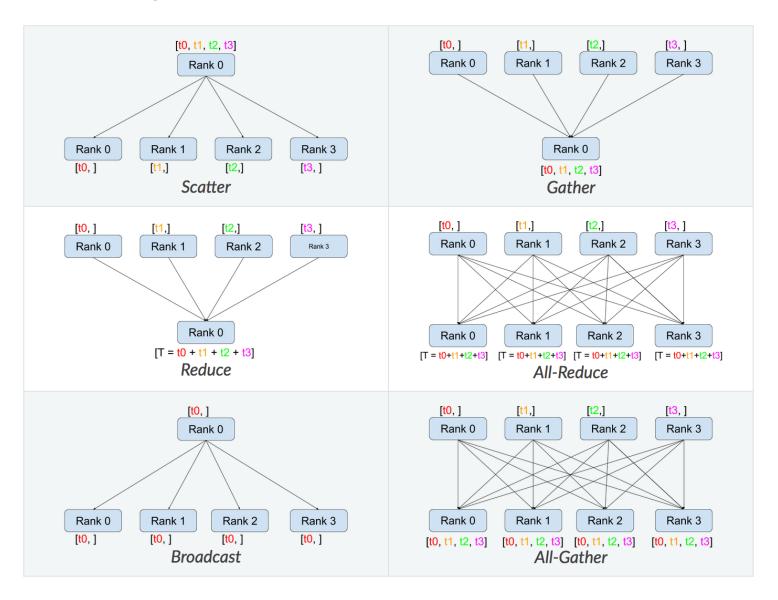
- Performance
 - Reducing the time to complete a data epoch
- Memory wall
- Economy
 - Multiple commodity servers, instead of a single expensive high-end server
- Hardware failure tolerance

How to make ML distributed?

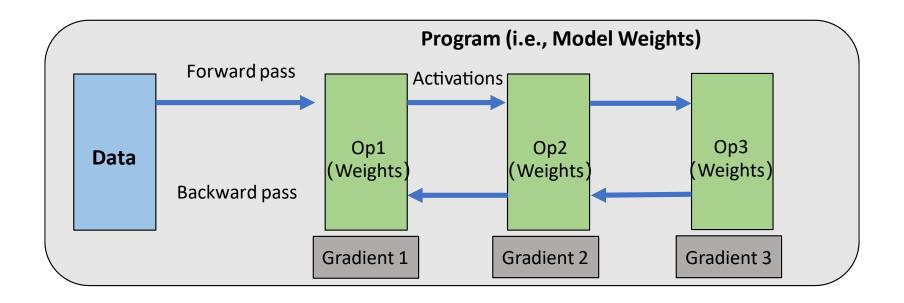
- Communication Backends:
 - NCCL
 - GLOO
 - MPI

Backend	gloo		mpi		nccl	
Device	CPU	GPU	CPU	GPU	CPU	GPU
send	✓	×	✓	?	×	✓
recv	✓	×	✓	?	×	✓
broadcast	✓	✓	✓	?	×	✓
all_reduce	✓	✓	✓	?	×	✓
reduce	✓	×	✓	?	×	✓
all_gather	✓	×	✓	?	×	✓
gather	✓	×	✓	?	×	✓
scatter	✓	×	✓	?	×	✓
reduce_scatter	×	×	×	×	×	✓
all_to_all	×	×	✓	?	×	✓
barrier	✓	×	✓	?	×	✓

ML Communication backend APIs



Basic execution model

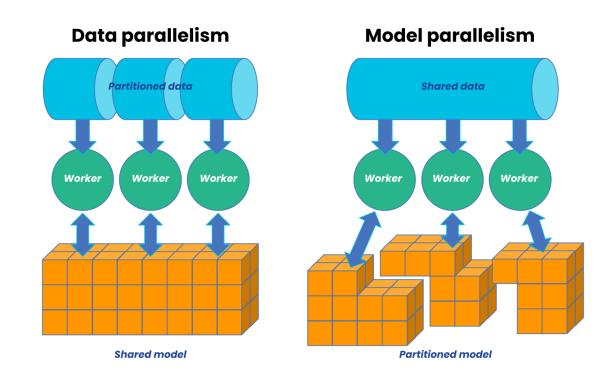


Workers must have sufficient memory to store data, weights, activations & gradients

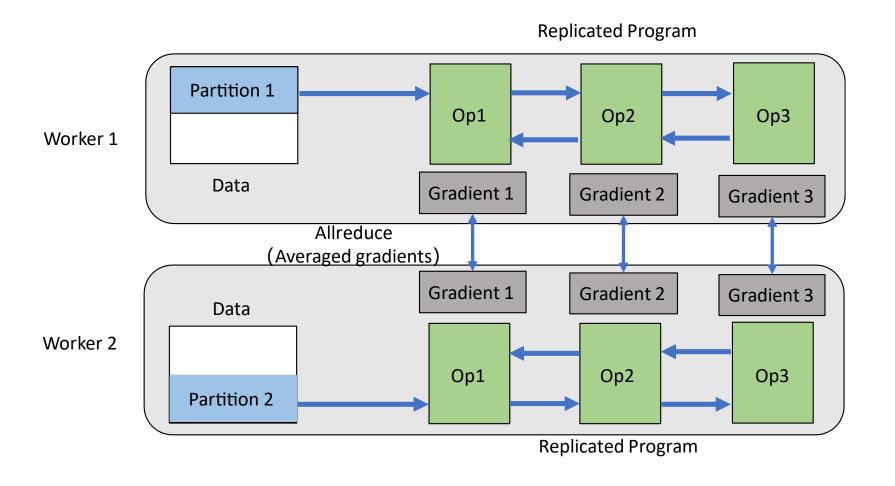
Otherwise, you get an <u>Out-Of-Memory (OOM)</u> exception

Types of Parallelism in Distributed ML

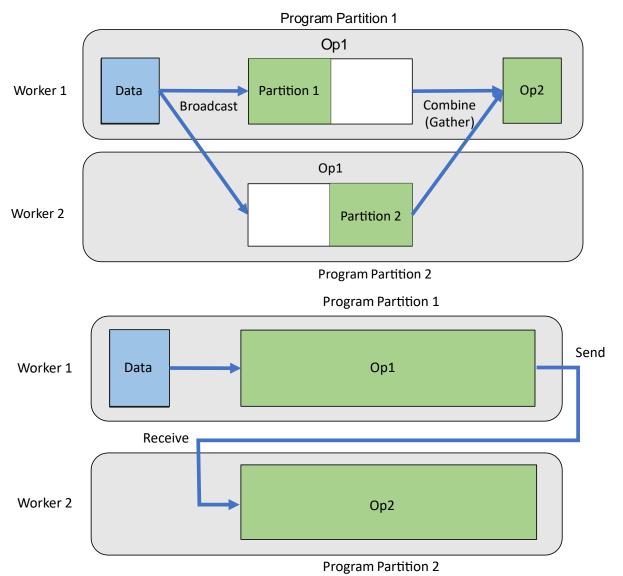
- Data Parallelism ->Input data is partitioned
- Model Parallelism -> Model is partitioned
- Hybrid Parallelism



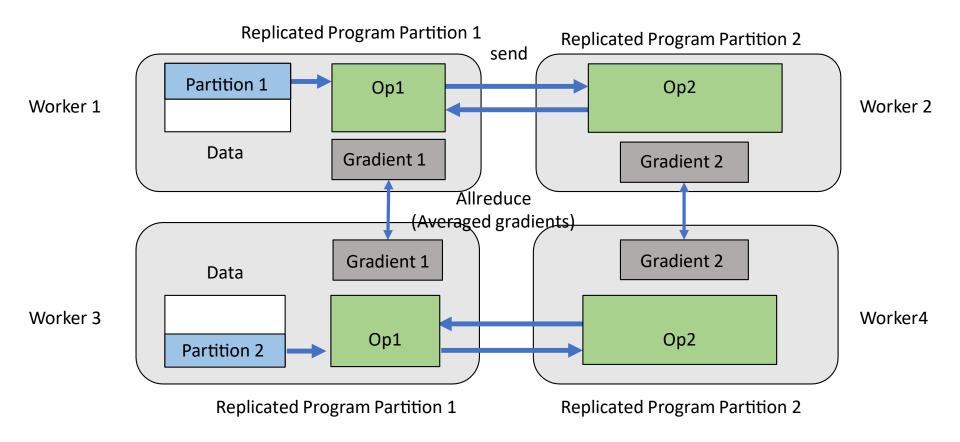
Data Parallelism



Model Parallelism



Hybrid Parallel Training

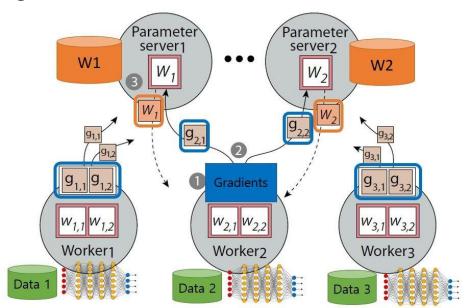


Parameter Server

- Limitation in workers' memory
 - Centralized Parameter Server
 - Decentralized Parameter Server

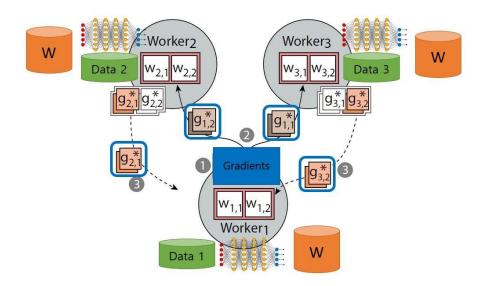
Centralized Parameter Server

- 1. The worker pulls the latest value of the weights
- 2. The worker calculates gradients
- 3. Push gradients to PS
- 4. PS updates weights



Decentralized Parameter Server

- 1. The worker pulls the latest value of the weights
- 2. The worker calculates gradients
- 3. Push gradients to other workers
- 4. Workers update their weights



Resources

Compulsory Reading

 PyTorch Distributed: Experiences on Accelerating Data Parallel Training https://www.vldb.org/pvldb/vol13/p3005-li.pdf

Recommended Reading

- Ray: A Distributed Framework for Emerging Al Applications
- PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel
- TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches

QUESTIONS?