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Many ML applications are emerging
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Deep neural networks
• Better accuracy

• High computation cost

• Gradient-based training

Diverse applications
• Natural language processing
• Deep reinforcement learning

• Graph neural networks

• …



Massive computational power is available
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Heterogeneous processors
• CPUs, GPUs and TPUs

• 10 – 100x acceleration

Global data centres
• Easy access to PB-scale data

• 100,000s machines

Three key factors that drive AI booming: Algorithms, Hardware, Data



Motivation behind Distributed ML
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ML frameworks: A new category 

of system software
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System architectures of ML frameworks
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1. Programming abstraction: 
Supporting ML in different
applications

2. Execution engine: Enable 

gradient-based computation & 

parallelise computation

Design Goals 

3. Hardware runtime: utilise
all heterogeneous
processors
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ML framework programming abstraction
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An unified programming abstraction for different ML applications (DNNs, GNNs, DRLs, …)

   

       

                   
   

       

       

           

                       

                  

Front-end language: Python
• Simple and flexible
• Poor performance

• Global Interpreter Lock (GIL)

Back-end language: C/C++
• Hardware-friendly
• Excellent performance



Using heterogenous processors
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Operators in ML models have execution kernels for CPUs and GPUs



Distributed Multi worker Execution
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Why Distributed ML Systems?
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• Performance
• Reducing the time to complete a data epoch

• Memory wall

• Economy

• Multiple commodity servers, instead of a single expensive

high-end server

• Hardware failure tolerance



How to make ML distributed?
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• Communication Backends:

• NCCL

• GLOO

• MPI



ML Communication backend APIs
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Basic execution model
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Workers must have sufficient memory to store data, weights,

activations & gradients

• Otherwise, you get an Out-Of-Memory (OOM) exception



Types of Parallelism in Distributed ML
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•Data Parallelism ->Input data is partitioned

•Model Parallelism -> Model is partitioned

•Hybrid Parallelism



Data Parallelism
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Model Parallelism
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Program Partition 1

Op1

       

       

       

   

    

               

       

               



Hybrid Parallel Training
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Parameter Server

• Limitation in workers' memory

• Centralized Parameter Server

• Decentralized Parameter Server
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Centralized Parameter Server
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1. The worker pulls the latest value of the weights

2. The worker calculates gradients

3. Push gradients to PS

4. PS updates weights



Decentralized Parameter Server

20Each worker uses part of its memory to keep the parameters

1. The worker pulls the latest value of the weights

2. The worker calculates gradients

3. Push gradients to other workers

4. Workers update their weights



Resources

• Compulsory Reading
o PyTorch Distributed: Experiences on Accelerating Data Parallel Training

https://www.vldb.org/pvldb/vol13/p3005-li.pdf 

• Recommended Reading
– Ray: A Distributed Framework for Emerging AI Applications

– PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel

– TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches
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https://www.vldb.org/pvldb/vol13/p3005-li.pdf


QUESTIONS?
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