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Many ML applications are emerging

Computer Vision NLP
Deep neural networks e Sequence of words
« Better accuracy |
* High computation cost 1 et Gl

« Gradient-based training

Diverse applications
Natural language processing
* Deep reinforcement learning
« Graph neural networks l }

Classification Sequence of words




Massive computational power Is available
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Global data centres
« Easy access to PB-scale data
 100,000s machines

Three key factors that drive Al booming: Algorithms, Hardware, Data
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Motivation behind Distributed ML
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ML frameworks: A new category
of system software

Neural network

Un/semi-
Neural Automatic structured data Training & Heterogenous Distributed
management .
Networks Differentiation Inference Processors Execution

libraries
(Theano, Caffe)

Data parallel
e sk, XK X X X X Vv
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ML framework
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System architectures of ML frameworks

Design Goals

1. Programming abstraction:

Supporting ML in different
applications

2. Execution engine: Enable
gradient-based computation &
parallelise computation

3. Hardware runtime: utilise
all heterogeneous
pProcessors

Architecture

High-level Front-end Languages (Python)

Data Model Optimiser Model
Processing Library Library Deployment
Computational Graph
Backend Runtime
CPU GPU TPU
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ML framework programming abstraction

Data pre-
processing
API

Neural
Network
API

SGD
Optimiser
API

—_—

lterative
training
API

Profiling & Model
> Debugging —>| Serving
API API

An unified programming abstraction for different ML applications (DNNs, GNNs, DRLs, ...)

Front-end language: Python

« Simple and flexible
* Poor performance

* Global Interpreter Lock (GIL)

Back-end language: C/C++

« Hardware-friendly
« Excellent performance

Data

Python implementation

Equivalent Back-end Graph ‘

Data

C/C++ implementation



Using heterogenous processors

Operators in ML models have execution kernels for CPUs and GPUs

Kernel4
(GPU)
Asynchronous
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kernel execution
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CPU Runtime GPU Runtime



Distributed Multi worker Execution

Input

Y

{ Worker J

v

Output

Partition Input

L U ..\

{ Worker 1 } { Worker 2 J { Worker 3 J
\ ' , Parallel
Computation

Combine Outputs

(a) Single-worker Execution (b) Distributed Multi-worker Execution



Why Distributed ML Systems?

« Performance
* Reducing the time to complete a data epoch

* Memory wall

 Economy

« Multiple commodity servers, instead of a single expensive
high-end server

« Hardware failure tolerance
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How to make ML distributed?

« Communication Backends:

Device CPU GPU CPU GPU CPU GPU
- GLOO
send v X v ? X v
o I\/I P I recv v x 4 H X v
broadcast v v v ? X v
all_reduce v v v ? X v
reduce v X v H X v
all_gather v X v ? X v
gather v X v ? X v
scatter v X v ? x v
reduce_scatter X x x x x v
all_to_all 1 4 x v ? X v

barrier v X v ? X v



ML Communication backend APIs
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Basic execution model

Forward pass

Data

—

Backward pass

N

Program (i.e., Model Weights)

Activations

— ﬁ
Opl Op2

—_

Op3

(Weights)] (Weights) (Weights)

Gradient 1 Gradient 2 Gradient 3

~

/

Workers must have sufficient memory to store data, weights,
activations & gradients
« Otherwise, you get an Out-Of-Memory (OOM) exception
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Types of Parallelism in Distributed ML

.Data Parallelism ->Input data is partitioned
-Model Parallelism -> Model is partitioned
-Hybrid Parallelism

Data parallelism Model parallelism

Shared model Partitioned model

14



Worker 1

Worker 2

Data Parallelism

Replicated Program
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Gradient 1
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Allreduce

(Averaged gradients) I
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Replicated Program
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Worker 1

Worker 2

Worker 1

Worker 2

Model Parallelism

Program Partition 1

Op1 )
Data Partition 1
Broadcast Combine
(Gather) /
N\ /
Op1l \
Partition 2
Program Partition 2
Program Partition 1
w Send
Data (e Opl
Receive
——— Op2

Program Partition 2
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Hybrid Parallel Training

Replicated Program Partition 1 Replicated Program Partition 2

/ send \
Partition 1 Op1 Op2
Worker 1 Worker 2
L L Gradient 1 Gradient 2 P
Allreduce 1
II\\I
~ s :
Gradient 1 Gradient 2
Data
Worker 3 Worker4
\ Partition 2 |m==» et lp2 J
Replicated Program Partition 1 Replicated Program Partition 2
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Parameter Server

« Limitation in workers' memory
e Centralized Parameter Server
e Decentralized Parameter Server
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A

Centralized Parameter Server

The worker pulls the latest value of the weights
The worker calculates gradients

Push gradients to PS

PS updates weights

B

Worker2
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Decentralized Parameter Server

The worker pulls the latest value of the weights
The worker calculates gradients

Push gradients to other workers

R

Workers update their weights

Each worker uses part of its memory to keep the parameters 20



Resources

« Compulsory Reading

o PyTorch Distributed: Experiences on Accelerating Data Parallel Training
https://www.vldb.org/pvidb/vol13/p3005-li.pdf

« Recommended Reading

— Ray: A Distributed Framework for Emerging Al Applications

— PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel

— TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches
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https://www.vldb.org/pvldb/vol13/p3005-li.pdf

QUESTIONS?

22
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