
Programming for Data Science at Scale

Distributed Machine Learning

Amir Noohi, Fall 2024

Many ML applications are emerging

2

Deep neural networks
• Better accuracy

• High computation cost

• Gradient-based training

Diverse applications
• Natural language processing
• Deep reinforcement learning

• Graph neural networks

• …

Massive computational power is available

3

Heterogeneous processors
• CPUs, GPUs and TPUs

• 10 – 100x acceleration

Global data centres
• Easy access to PB-scale data

• 100,000s machines

Three key factors that drive AI booming: Algorithms, Hardware, Data

Motivation behind Distributed ML

4

Gap to be

filled by

Distributed

ML Systems

ML frameworks: A new category

of system software

5

Neural

Networks

Automatic

Differentiation

Un/semi-
structured data
management

Training &

Inference

Heterogenous

Processors

Distributed

Execution

Neural network
libraries

(Theano, Caffe)

Data parallel
systems (Spark,

Giraph)

ML framework
(PyTorch,

TensorFlow)

System architectures of ML frameworks

6

1. Programming abstraction:
Supporting ML in different
applications

2. Execution engine: Enable

gradient-based computation &

parallelise computation

Design Goals

3. Hardware runtime: utilise
all heterogeneous
processors

Architecture

ML framework programming abstraction

7

An unified programming abstraction for different ML applications (DNNs, GNNs, DRLs, …)

Front-end language: Python
• Simple and flexible
• Poor performance

• Global Interpreter Lock (GIL)

Back-end language: C/C++
• Hardware-friendly
• Excellent performance

Using heterogenous processors

8

Operators in ML models have execution kernels for CPUs and GPUs

Distributed Multi worker Execution

9

Worker

Input

Output

（a）Single-worker Execution

Worker 1 Worker 2 Worker 3

Partition Input

Combine Outputs

（b）Distributed Multi-worker Execution

Parallel

Computation

Why Distributed ML Systems?

10

• Performance
• Reducing the time to complete a data epoch

• Memory wall

• Economy

• Multiple commodity servers, instead of a single expensive

high-end server

• Hardware failure tolerance

How to make ML distributed?

11

• Communication Backends:

• NCCL

• GLOO

• MPI

ML Communication backend APIs

12

Basic execution model

13

Workers must have sufficient memory to store data, weights,

activations & gradients

• Otherwise, you get an Out-Of-Memory (OOM) exception

Types of Parallelism in Distributed ML

14

•Data Parallelism ->Input data is partitioned

•Model Parallelism -> Model is partitioned

•Hybrid Parallelism

Data Parallelism

15

Model Parallelism

16

Program Partition 1

Op1

Hybrid Parallel Training

17

Parameter Server

• Limitation in workers' memory

• Centralized Parameter Server

• Decentralized Parameter Server

18

Centralized Parameter Server

19

1. The worker pulls the latest value of the weights

2. The worker calculates gradients

3. Push gradients to PS

4. PS updates weights

Decentralized Parameter Server

20Each worker uses part of its memory to keep the parameters

1. The worker pulls the latest value of the weights

2. The worker calculates gradients

3. Push gradients to other workers

4. Workers update their weights

Resources

• Compulsory Reading
o PyTorch Distributed: Experiences on Accelerating Data Parallel Training

https://www.vldb.org/pvldb/vol13/p3005-li.pdf

• Recommended Reading
– Ray: A Distributed Framework for Emerging AI Applications

– PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel

– TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches

21

https://www.vldb.org/pvldb/vol13/p3005-li.pdf

QUESTIONS?

22

	Slide 1
	Slide 2: Many ML applications are emerging
	Slide 3: Massive computational power is available
	Slide 4: Motivation behind Distributed ML
	Slide 5: ML frameworks: A new category of system software
	Slide 6: System architectures of ML frameworks
	Slide 7: ML framework programming abstraction
	Slide 8: Using heterogenous processors
	Slide 9: Distributed Multi worker Execution
	Slide 10: Why Distributed ML Systems?
	Slide 11: How to make ML distributed?
	Slide 12: ML Communication backend APIs
	Slide 13: Basic execution model
	Slide 14: Types of Parallelism in Distributed ML
	Slide 15: Data Parallelism
	Slide 16: Model Parallelism
	Slide 17: Hybrid Parallel Training
	Slide 18: Parameter Server
	Slide 19: Centralized Parameter Server
	Slide 20: Decentralized Parameter Server
	Slide 21: Resources
	Slide 22: Questions?

