Programming for Data Science at Scale

Distributed Machine Learning

&%\ THE UNIVERSITY
\@N/: of EDINBURGH

D
EERS

Amir Noohi, Fall 2024

Many ML applications are emerging

Computer Vision NLP
Deep neural networks e Sequence of words
« Better accuracy |
* High computation cost 1 et Gl

« Gradient-based training

Diverse applications
Natural language processing
* Deep reinforcement learning
« Graph neural networks l }

Classification Sequence of words

Massive computational power Is available

7 uter Architecturé
e Age for Comp
. ANew Golden

Heterogeneous processors e L —
 CPUs, GPUs and TPUs R e
« 10— 100x acceleration 20

oppy
- papeg
whel

hit $200bnin |

Global data centres
« Easy access to PB-scale data
 100,000s machines

Three key factors that drive Al booming: Algorithms, Hardware, Data

Petaflop/s-day (Training)

10,000

1,000

100

10

001

0001

Motivation behind Distributed ML

e AlphaGo Ze

Gap to be
Architecture Searith - filled by
0\ Distributed
(o) oXception'TU Dota 1v1 ML Systems

<€
ot oo s _ 21U

Js&irﬂncﬁwdeﬁandmg Conv Nets
onths
s Law (2x every 1810

O.AlexNet
e, Mop'olt-x-

Moore

ML frameworks: A new category
of system software

Neural network

Un/semi-
Neural Automatic structured data Training & Heterogenous Distributed
management .
Networks Differentiation Inference Processors Execution

libraries
(Theano, Caffe)

Data parallel
e sk, XK X X X X Vv

Giraph)

ML framework
oty v/ v v v v

TensorFlow)

N

System architectures of ML frameworks

Design Goals

1. Programming abstraction:

Supporting ML in different
applications

2. Execution engine: Enable
gradient-based computation &
parallelise computation

3. Hardware runtime: utilise
all heterogeneous
pProcessors

Architecture

High-level Front-end Languages (Python)

Data Model Optimiser Model
Processing Library Library Deployment
Computational Graph
Backend Runtime
CPU GPU TPU

D

ML framework programming abstraction

Data pre-
processing
API

Neural
Network
API

SGD
Optimiser
API

—_—

lterative
training
API

Profiling & Model
> Debugging —>| Serving
API API

An unified programming abstraction for different ML applications (DNNs, GNNs, DRLs, ...)

Front-end language: Python

« Simple and flexible
* Poor performance

* Global Interpreter Lock (GIL)

Back-end language: C/C++

« Hardware-friendly
« Excellent performance

Data

Python implementation

Equivalent Back-end Graph ‘

Data

C/C++ implementation

Using heterogenous processors

Operators in ML models have execution kernels for CPUs and GPUs

Kernel4
(GPU)
Asynchronous

\
\

kernel execution

CPU Kernel Dlspatcher GPU Kernel Dlspatcher
| |
v
e N\ a
=%) 000 || [68) 0e
1 O OO
_ Buffers CPU Threads) & Buffers GPU Streams)

CPU Runtime GPU Runtime

Distributed Multi worker Execution

Input

Y

{ Worker J

v

Output

Partition Input

L U ..\

{ Worker 1 } { Worker 2 J { Worker 3 J
\ ' , Parallel
Computation

Combine Outputs

(a) Single-worker Execution (b) Distributed Multi-worker Execution

Why Distributed ML Systems?

« Performance
* Reducing the time to complete a data epoch

* Memory wall

 Economy

« Multiple commodity servers, instead of a single expensive
high-end server

« Hardware failure tolerance

10

How to make ML distributed?

« Communication Backends:

Device CPU GPU CPU GPU CPU GPU
- GLOO
send v X v ? X v
o I\/I P I recv v x 4 H X v
broadcast v v v ? X v
all_reduce v v v ? X v
reduce v X v H X v
all_gather v X v ? X v
gather v X v ? X v
scatter v X v ? x v
reduce_scatter X x x x x v
all_to_all 1 4 x v ? X v

barrier v X v ? X v

ML Communication backend APIs

[t0, 1, 2, t3]

Rank 0 } [Rank 1] { Rank 2 } { Rank 3 J

[t0,] [[i2.] [t3,]
Scatter
[0,] [t1,] [i2,] [t3,]

Rank0 | | Rank1 | | Rank2 | | mms

Rank 0
[T=10+11+1(2+1t3]
Reduce

[to,]

Rank 0 J [Rank 1 J [Rank 2 { Rank 3 J

[0,] [0,] [0,] [t0,]
Broadcast

_[10,] [t.] [12,] [t3,]
L Rank 0 J { Rank 1 J [Rank 2] [Rank 3 J

[to, t1, t2, 13]
Gather

) [tO,] [t1.] [12,] [t3,1]

| Rank 0 J [Rank 1 [Rank2] [Rank3

\
Rank 0 J [Rank 1 [Rank 2 J [Rank 3
L. _/ _/

[T = 0+1+24t3] [T = t0+1+24+3] [T = 0+1+2H3] [T = tO+1+{2+3]

All-Reduce

[t0,] [1.] [t2,) [t3,]
[Rank 0 J Rank 1] [Rank 2] [Rank 3 }

[RankOJ Rank 1 J [Rank2J [Rank3J
[to, t1, t2, t3] [tO, t1, 12, t3] [tO, t1, t2,t3] [tO, t1, t2, 3]

All-Gather

12

Basic execution model

Forward pass

Data

—

Backward pass

N

Program (i.e., Model Weights)

Activations

— ﬁ
Opl Op2

—_

Op3

(Weights)] (Weights) (Weights)

Gradient 1 Gradient 2 Gradient 3

~

/

Workers must have sufficient memory to store data, weights,
activations & gradients
« Otherwise, you get an Out-Of-Memory (OOM) exception

13

Types of Parallelism in Distributed ML

.Data Parallelism ->Input data is partitioned
-Model Parallelism -> Model is partitioned
-Hybrid Parallelism

Data parallelism Model parallelism

Shared model Partitioned model

14

Worker 1

Worker 2

Data Parallelism

Replicated Program

K

Partition 1

-~

Data

—ﬁ

Opl
<_

Op2

ﬁ
Op3
h

Gradient 1

Gradient 2

Gradient 3

1/

Allreduce

(Averaged gradients) I

Data

Partition 2

I

I

Gradient 1

Gradient 2

Gradient 3

Op2

\

Replicated Program

15

Worker 1

Worker 2

Worker 1

Worker 2

Model Parallelism

Program Partition 1

Op1)
Data Partition 1
Broadcast Combine
(Gather) /
N\ /
Op1l \
Partition 2
Program Partition 2
Program Partition 1
w Send
Data (e Opl
Receive
——— Op2

Program Partition 2

16

Hybrid Parallel Training

Replicated Program Partition 1 Replicated Program Partition 2

/ send \
Partition 1 Op1 Op2
Worker 1 Worker 2
L L Gradient 1 Gradient 2 P
Allreduce 1
II\\I
~ s :
Gradient 1 Gradient 2
Data
Worker 3 Worker4
\ Partition 2 |m==» et lp2 J
Replicated Program Partition 1 Replicated Program Partition 2

17

Parameter Server

« Limitation in workers' memory
e Centralized Parameter Server
e Decentralized Parameter Server

18

A

Centralized Parameter Server

The worker pulls the latest value of the weights
The worker calculates gradients

Push gradients to PS

PS updates weights

B

Worker2

19

Decentralized Parameter Server

The worker pulls the latest value of the weights
The worker calculates gradients

Push gradients to other workers

R

Workers update their weights

Each worker uses part of its memory to keep the parameters 20

Resources

« Compulsory Reading

o PyTorch Distributed: Experiences on Accelerating Data Parallel Training
https://www.vldb.org/pvidb/vol13/p3005-li.pdf

« Recommended Reading

— Ray: A Distributed Framework for Emerging Al Applications

— PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel

— TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches

21

https://www.vldb.org/pvldb/vol13/p3005-li.pdf

QUESTIONS?

22

	Slide 1
	Slide 2: Many ML applications are emerging
	Slide 3: Massive computational power is available
	Slide 4: Motivation behind Distributed ML
	Slide 5: ML frameworks: A new category of system software
	Slide 6: System architectures of ML frameworks
	Slide 7: ML framework programming abstraction
	Slide 8: Using heterogenous processors
	Slide 9: Distributed Multi worker Execution
	Slide 10: Why Distributed ML Systems?
	Slide 11: How to make ML distributed?
	Slide 12: ML Communication backend APIs
	Slide 13: Basic execution model
	Slide 14: Types of Parallelism in Distributed ML
	Slide 15: Data Parallelism
	Slide 16: Model Parallelism
	Slide 17: Hybrid Parallel Training
	Slide 18: Parameter Server
	Slide 19: Centralized Parameter Server
	Slide 20: Decentralized Parameter Server
	Slide 21: Resources
	Slide 22: Questions?

