

Text Technologies for Data Science INFR11145

Comparing Text Corpora (2)

Instructor: **Björn Ross**

06-Nov-2024

1

LDA Overview

Background: Plate Notation

THE UNIVERSITY of EDINBURGH

Björn Ross, TTDS 2024/2025

3

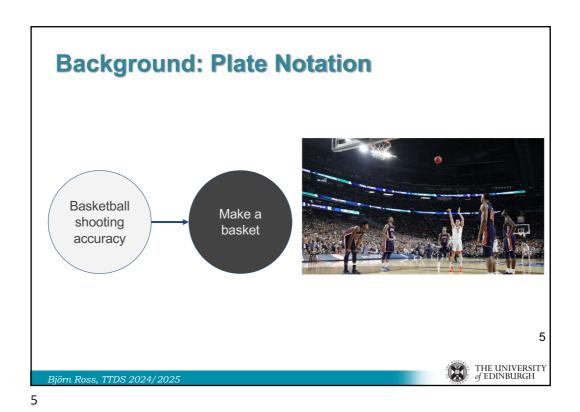
Background: Plate Notation

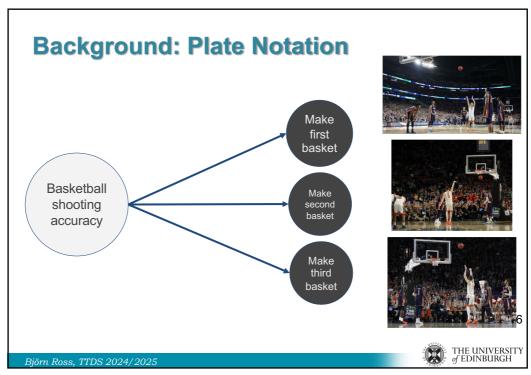
4

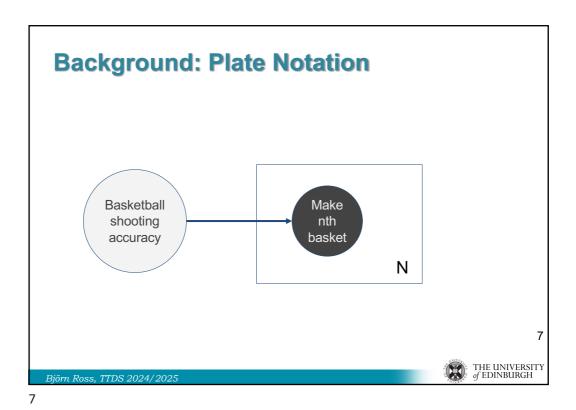
Björn Ross, TTDS 2024/2025

THE UNIVERSITY of EDINBURGH

л



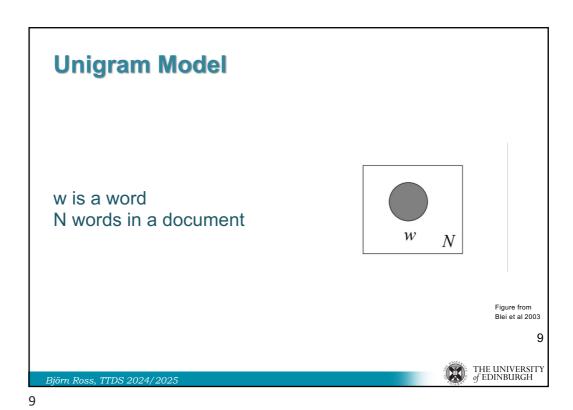


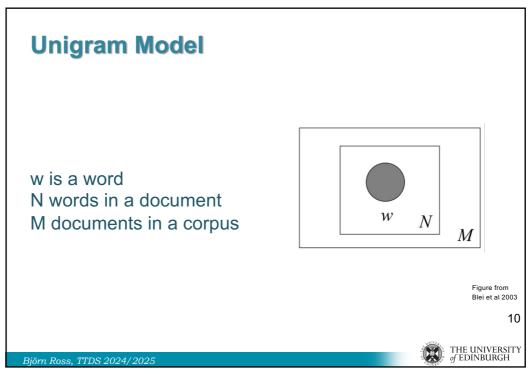


Latent Dirichlet Allocation

- Let's start with a very simple model
- We will work our way up to the full LDA model

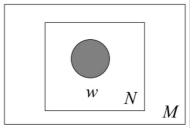
Björn Ross, TTDS 2024/2025





Unigram Model

w is a word
N words in a document
M documents in a corpus
w is a vector of words (i.e. doc)



$$p(\mathbf{w}) = \prod_{n=1}^{N} p(w_n)$$

Figure from Blei et al 2003

11

THE UNIVERSIT

Björn Ross, TTDS 2024/2025

11

Probability with a Unigram Model

$$p(\mathbf{w}) = \prod_{n=1}^{N} p(w_n)$$

What is the probability of the example sentence?

"My dog barked at another dog."

word	my	at	dog	another	barked
probability	.10	.10	.05	.04	.03

12

Unigram Model...

- What is the point of making these models more complex?
- Why not just use the basic unigram model for everything?
- Remember:
 - Higher text probability doesn't imply a better model
 - We want to accurately describe the data
 - > higher probability for *real* documents, lower probability for noise

THE UNIVERSITY of EDINBURGH

Björn Ross, TTDS 2024/2025

14

Mixture of Unigrams Model

z is the topic of a document

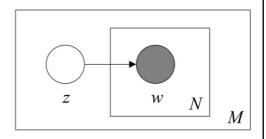


Figure from

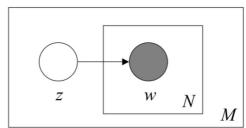
15

Björn Ross, TTDS 2024/2025

THE UNIVERSIT

Mixture of Unigrams Model

z is the topic of a document



$$p(\mathbf{w}) = \sum_{z} p(z) \prod_{n=1}^{N} p(w_n | z)$$

16

Björn Ross, TTDS 2024/2025

16

Probability with Mixture of Unigrams

$$p(\mathbf{w}) = \sum_{z} p(z) \prod_{n=1}^{N} p(w_n | z).$$

What is the probability of the sentence? Ignore stopwords: "my", "after", "the"

"My dog chased after the bus."

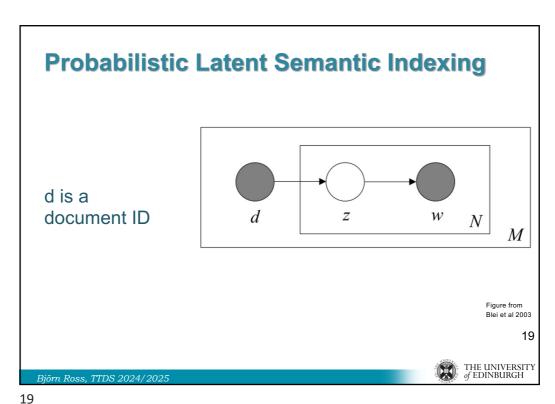
w_i	cat	dog	chased	car	bus
$P(w_i z = pets)$.20	.30	.10	.01	.01
$P(w_i z = vehicles)$.01	.01	.10	.30	.20

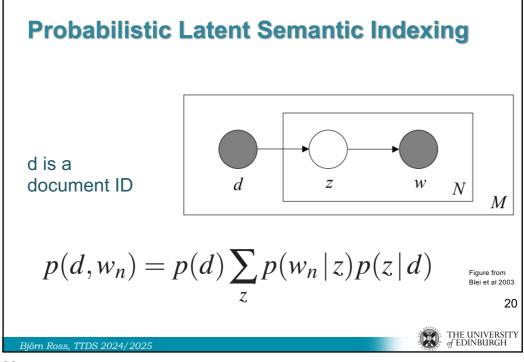
$$p(z = pets) = 0.6,$$

$$p(z = pets) = 0.4$$

17

p(z = vehicles) = 0.4





Probability with pLSI

w_i	cat	sat	down	car	broke
$p(w_i z=t_1)$.2	.1	.05	.01	.1
$p(w_i z=t_2)$.01	.05	.1	.3	.1

 d_1 "The **cat** sat down."

$p(d=d_1)$.01
$p(z = t_1 d = d_1)$.6
$p(z = t_2 d = d_1)$.4

W_i	cat	sat	down	car	broke
$p(w_i z=t_1)$.2	.1	.05	.01	.1
$p(w_i z=t_2)$.01	.05	.1	.3	.1

What is the joint probability of the document and the word "cat"?

Björn Ross, TTDS 2024/2025

21

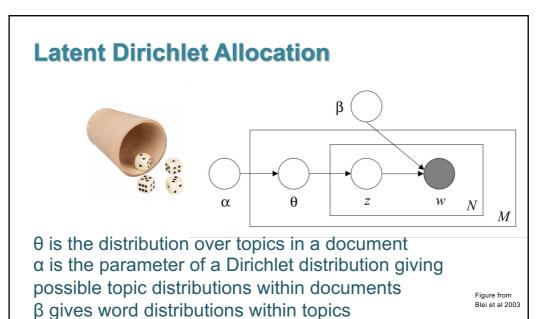
Probability with pLSI

$$p(d,w_n) = p(d) \sum_{z} p(w_n | z) p(z | d)$$

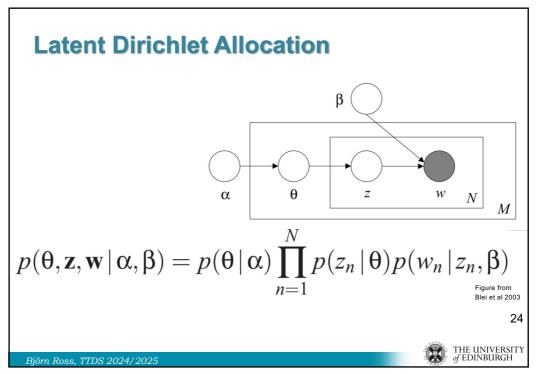
Solution:

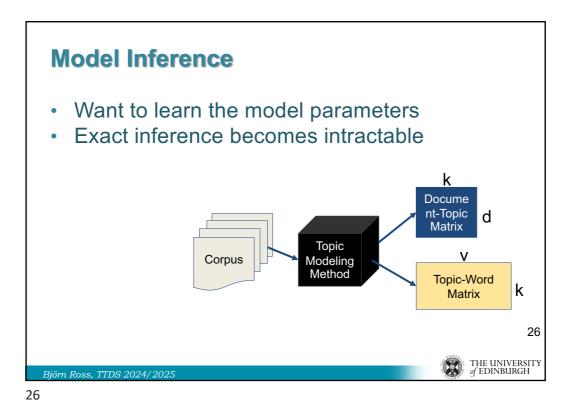
The **cat** sat down. 0.01 * (0.2 * 0.6 + 0.01 * 0.4) = 0.00124

22



Björn Ross, TTDS 2024/2025





Model Inference

- Instead, use an approximate method such as:
 - Gibbs sampling
 - Variational Inference

THE UNIVERSITY of EDINBURGH

Björn Ross, TTDS 2024/2025

Goal: Learn Φ , θ given a set of documents D

 Φ = topic-word probabilities

 θ = document-topic probabilities

Known:

corpus, α , β and the probability that a word is from a topic conditional on the assignments of all other words to topics

$$P(z_i = j \mid \mathbf{z}_{-i}, w_i, d_i, \cdot) \propto \frac{C_{w_i j}^{WT} + \beta}{\sum_{w=1}^{W} C_{wj}^{WT} + W\beta} \frac{C_{d_i j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_i t}^{DT} + T\alpha}$$

Note: the ∝ symbol means "proportional to"

Biörn Ross, TTDS 2024/2025

28

28

Gibbs Sampling for LDA

Want to learn Φ , θ given a set of documents D

- 1. Assign each word a topic randomly
- 2. Calculate count matrices
- 3. Repeat until convergence:
 - For every document d
 - · For every word i
 - Decrement count matrices C^{WT} and C^{DT} for current topic assignment
 - · Sample a new topic assignment
 - Increment count matrices C^{WT} and C^{DT} for new topic assignment
- 4. Calculate Φ and θ

29

- d1 Green eggs and ham.
- d2 Ham and green peppers.
- d3 Ham and cheese.
- d1 Green eggs and ham.
- d2 Ham and green peppers.
- d3 Ham and cheese.

Random initialization.

30

TI

VERSITY

Björn Ross, TTDS 2024/2025

30

Gibbs Sampling for LDA

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	1	1	1	1	1	1
t2	1	0	2	2	0	0

Green eggs and ham. Ham and green peppers. Ham and cheese.

C^{DT}	d1	d2	d3
t1	2	2	2
t2	2	2	1

31

Assume (for the moment) $\alpha = \beta = 0$

θ	green	eggs	and	ham	peppers	cheese
t1	0.17	0.17	0.17	0.17	0.17	0.17
t2	0.20	0.00	0.40	0.40	0.00	0.00

Green eggs and ham. Ham and green peppers. Ham and cheese.

Ф	d1	d2	d3
t1	0.50	0.50	0.66
t2	0.50	0.50	0.33

32

Björn Ross, TTDS 2024/2025

32

THE UNIVERSITY
of EDINBURGH

Gibbs Sampling for LDA

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	1	1	1	1	1	1
t2	1	0	2	2	0	0

Green eggs and ham. Ham and green peppers. Ham and cheese.

C^{DT}	d1	d2	d3
t1	2	2	2
t2	2	2	1

33

Björn Ross, TTDS 2024/2025

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	1	1	1	1	1	1
t2	1	0	2	2	0	0

Green eggs and ham.
Ham and green peppers.
Ham and cheese.

C^{DT}	d1	d2	d3
t1	2	2	2
t2	2	2	1

34

Björn Ross, TTDS 2024/2025

34

Gibbs Sampling for LDA

$$\frac{C_{w,i}^{WT} + \beta}{\sum_{w=1}^{W} C_{wj}^{WT} + W\beta} \frac{C_{d,j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d,t}^{DT} + T\alpha}$$

Assume (for the moment) $\alpha=\beta=0$

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	0	1	1	1	1	1
t2	1	0	2	2	0	0

Green eggs and ham.

Ham and green peppers.

Ham and cheese.

C^{DT}	d1	d2	d3
t1	1	2	2
t2	2	2	1

35

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	0	1	1	1	1	1
t2	2	0	2	2	0	0

Green eggs and ham.
Ham and green peppers.
Ham and cheese.

C^{DT}	d1	d2	d3
t1	1	2	2
t2	3	2	1

36

Björn Ross, TTDS 2024/2025

36

Gibbs Sampling for LDA

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	0	1	1	1	1	1
t2	2	0	2	2	0	0

Green eggs and ham. Ham and green peppers. Ham and cheese.

C^{DT}	d1	d2	d3
t1	1	2	2
t2	3	2	1

37

$$\frac{C_{w_{i}j}^{WT} + \beta}{\sum_{w=1}^{W} C_{wj}^{WT} + W\beta} \frac{C_{d_{i}j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_{i}t}^{DT} + T\alpha}$$

Assume (for the moment) $\alpha = \beta = 0$

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	0	0	1	1	1	1
t2	2	0	2	2	0	0

Green eggs and ham. Ham and green peppers. Ham and cheese.

C^{DT}	d1	d2	d3
t1	0	2	2
t2	3	2	1

38

Björn Ross, TTDS 2024/2025

THE UNIVERSITY of EDINBURGH

38

Gibbs Sampling for LDA

$$\frac{C_{w_ij}^{WT} + \beta}{\sum_{w=1}^{W} C_{wj}^{WT} + W\beta} \frac{C_{d_ij}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_it}^{DT} + T\alpha}$$

$C^{WT} + \alpha$	green	eggs	and	ham	peppers	cheese
t1	0.01	0.01	1.01	1.01	1.01	1.01
t2	2.01	0.01	2.01	2.01	0.01	0.01

Green eggs and ham.
Ham and green peppers.
Ham and cheese.

$C^{DT} + \beta$	d1	d2	d3
t1	0.01	2.01	2.01
t2	3.01	2.01	1.01

39

- Repeat until convergence
- Probabilistic algorithm results depend on random initialisation and random samples!

Björn Ross, TTDS 2024/2025

40

Topic Modeling Examples

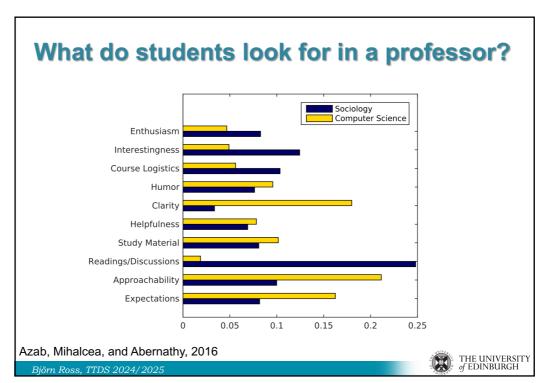
What do students look for in a professor?

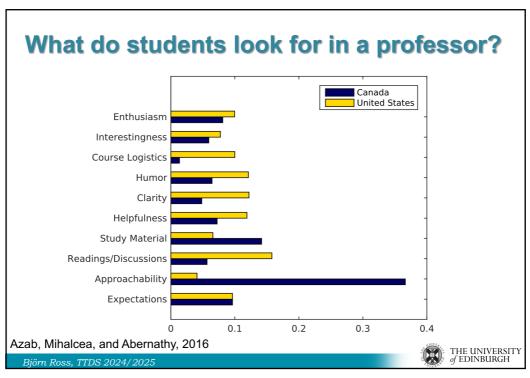
Topic	Sample words	
Approachability	prof, fair, clear, helpful, teaching, approachable, nice, organized, ex-	
	tremely, friendly, super, amazing	
Clarity	understand, hard, homework, office, material, clear, helpful, problems,	
	explains, accent, questions, extremely	
Course Logistics	book, study, boring, extra, nice, credit, lot, hard, attendance, make,	
	fine, attention, pay, mandatory	
Enthusiasm	teaching, passionate, awesome, enthusiastic, professors, loves, cares,	
	wonderful, fantastic, passion	
Expectations hard, work, time, lot, comments, tough, expects, worst, stuff,		
	horrible, classes	
Helpfulness	helpful, nice, recommend, cares, super, understanding, kind, extremely,	
	effort, sweet, friendly, approachable	
Humor	guy, funny, fun, awesome, cool, entertaining, humor, hilarious, jokes,	
	stories, love, hot, enjoyable	
Interestingness	interesting, material, recommend, lecturer, engaging, classes, knowl-	
	edgeable, enjoyed, loved, topics	
Readings/ Discus-	readings, papers, writing, ta, interesting, discussions, grader, essays,	
sions boring, books, participation		
Study Material	exams, notes, questions, material, textbook, hard, slides, study, answer,	
	clear, tricky, attend, long, understand	

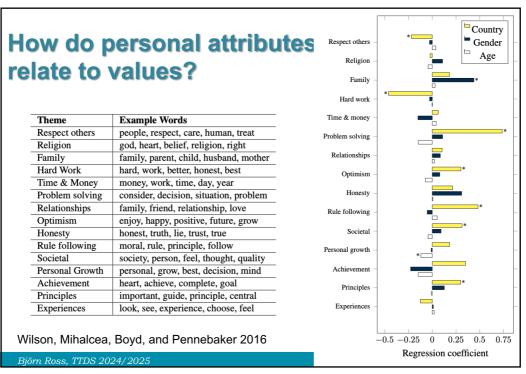
Azab, Mihalcea, and Abernathy, 2016

Björn Ross, TTDS 2024/2025

42







Annotation + Classification

THE UNIVERSIT of EDINBURGH

Björn Ross, TTDS 2024/2025

46

Annotation + Classification

- Method 1: Traditional Supervised Learning
 - Annotate representative samples
 - Train a classifier
 - Apply to rest of data
- Method 2: Transfer Learning
 - Find another large, but similar dataset
 - Train a classifier on that dataset
 - · Optionally: fine-tune classifier to your smaller dataset
 - · Apply to rest of your data

Björn Ross, TTDS 2024/2025

After Classification

- Which features are most relevant for each class?
- What are common words/topics for each class?
- How do predicted classes relate to other variables?
- More about text classification coming up next week!

Björn Ross, TTDS 2024/2025

48

Wrap-up

- Content analysis background
- Word-level differences
- Dictionaries and Lexica
- Topic modeling
- Annotation + classification

Readings

- Manning: IR book section 13.5
- "Probabilistic Topic Models" by David Blei
- "<u>Latent Dirichlet Allocation</u>" by David Blei, Andrew Y. Ng, and Michael I. Jordan
- "Probabilistic Topic Models" by Mark Steyvers and Tom Griffiths

To watch:

 Guest lecture (2017) by David Blei at University of Edinburgh School of Informatics

Björn Ross, TTDS 2024/2025

