
Course: Natural Computing

1. Optimisation

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Optimisation: Searching for a maximum or minimum

Optimisation by “hill-climbing” (or: “valley-diving”)

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Optimisation: Searching for a minimum or maximum

States: x ∈ X with X ⊂ R
d or X ⊂ Z

d

Objective function F : X → R

For which x ∈ X the value F (x) is smallest/largest?

In order to avoid mathematical difficulties, we will assume that

F is bounded from below/above,

i.e. ∃c ∀x F (x) > c / F (x) < c

X is finite and closed (compact),
i.e. at least one minimum will always exist

In natural computing, we usually do not assume the existence of
derivatives or the availability an analytical form of F .

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



A few relevant terms

Optimum:

Maximum (in maximisation problems)
Minimum (in minimisation problems)

Extremum: a point that is either a minimum or a maximum

Gradient: generalisation of the derivative to higher dimensions;
a vector pointing in the upward direction (if there is an upward
direction)

Stationary point: any point where there is no upward direction
(gradient is the zero vector) can be a

maximum,
minimum or
saddle point (i.e. a maximum w.r.t. some directions, minimum
w.r.t. to others)

Hessian: a matrix that contains second derivatives

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Optimisation methods

Hill-climbing (with step width control)

Downhill simplex (Nelder–Mead) Method

Gradient descent

Newton methods

BFGS method (Broydon-Fletcher-Goldfarb-Shanno)

Conjugate gradient

Stochastic optimisation

stochastic problems
stochastic search

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Metaheuristic Optimisation

Conceptually and computationally simple

Parallel search by a population

Easily adaptable to particular problems

Can be used, .e.g., for optimisation of hyperparameters of
other algorithms

Focus on exploration-exploitation dilemma

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Optimisation by “hill-climbing” (or “valley-diving”)

Searching for improvement among near-by states?

https://en.wikipedia.org/wiki/Rastrigin_function

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Local optima

How important is it in practice to avoid local optima?

An objective function over a high-dimensional spaces is
expected to have few minima (or maxima), instead the
stationary points are more likely to be saddle points

Nevertheless, an agent moving in this landscape will spend
most of the time at or near the local optima, and saddle points
can cause similar problems

High-dimensional data is usually sparse, i.e. not all local
optima may be revealed

Benchmark functions tend to have many local optima (or
completely flat regions)

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Optimisation by “Hill-Climbing” (rather: “valley-diving”)

Searching for improvement among near-by states?

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Evolutionary algorithms

Natural evolution achieves
improvement by

Small random changes

Selection of “good”
individuals

Replenishing the population

We’ll focus on these (and leave the
genotype-phenotype relations for later)

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Nature-inspired optimisation

The natural phenomenon that is referred to, is usually merely
an analogy

Nevertheless, nature has found astonishing solution to difficult
problems, so it is interesting to learn how this happens

Nature-inspired algorithms are usually stochastic optimisation
algorithms, i.e. randomness is added in order to escape local
minima

Different types of noise characterise different algorithms

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



A simple example: Hill-climbing

Consider first a single individual
x ∈ R

d :

Apply a small change

Selection consists in accepting
or rejecting the change based on
an evaluation function F :
Maximisation task:

Reject if F (x ′) < F (x)
accept otherwise

Continue with one individual

Obviously, this is not a sophisticated and efficient algorithm. However,
because of its simplicity, it seems good for a start.

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Hill-climbing: Operator formalism

Possible changes:

add noise to a component of x

swap two of its components

change two components
simultaneously

...

More formally: x ∈ X ⊂ R
d

Consider operators

O : X → X

O(x) = x
′

Let O be a class of such operators

e.g. all operators O
+ε

k
and O

−ε

k
that add or subtract ε to or from

the k-th component of x , i.e. Oε =
{

O
+ε

k
,O

−ε

k
|k ∈ {1, . . . , d}

}

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Hill-climbing

Hill-climbing

choose a class of operators on x

apply any of them and accept or
reject bases on evaluation
function F

until no further improvements
can be achieved

E.g. All-Ones problem (x ∈ {0, 1}d ):
F (x)=

∑

d

k=1
xk , number of “1”s in x

Operators: O = {Ok |k = 1, . . . , d}, Ok flips k-th component of x

Result:

For any starting point x0∈{0, 1}d, hill-climbing finds x=(1, . . . , 1)

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Hill-climbing

Hill-climbing

choose a class of operators on x

apply any of them and accept or
reject bases on evaluation
function F

until no further improvements
can be achieved

E.g. All-Ones problem (x ∈ {0, 1}d ):
F (x)=

∑

d

k=1
xk , number of “1”s in x

Operators: O = {Okl |k , l = 1, . . . , d}, Okl swaps the k-th and the
l -th component of x

Result: None of the operators in the set O have any effect on F

⇒ no improvement. (Single-flip operators would work better in this case.)

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Hill-climbing: Conclusion

Hill-climbing

− tends to get stuck local optima

− does not acquire information
about the problem while running

+ is widely applicable

+ can be used as a baseline or

+ can be used for final or intermit-
tent improvement of the solution

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh



Outlook: Natural Computing

Algorithms

Theory

Extensions

Applications

Recent trends

Natural Computing 2024/25, week 1, Michael Herrmann, School of Informatics, University of Edinburgh


