
Course: Natural Computing

2. Discrete Optimisation Algorithms
Simulated Annealing and Genetic Algorithms

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Overview

Simulated Annealing: Inspired by statistical physics (I)

Genetic Algorithms: Inspired by natural evolution (II+III)

Ant Colony Optimisation∗: Inspired by reinforcement learning

∗Discussion on Friday this week and in the tutorials

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



I. Simulated Annealing

Course: Natural Computing (week 2)

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Simulated Annealing

Inspired by the traditional annealing process in metals:

at higher temperatures the atoms are more random
when cooling down, the atoms will locally crystallise
during repeated temperature changes the crystals will become
the dominant phase of the metal

First applied to optimisation problems by Kirkpatrick, Gelatt,
Vecchi (1983)

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Simulated Annealing: Physics background

Find low-energy states of type x = (x1, . . . , xD), xi ∈ {0, 1}

Describing D stochastic atoms with xi =

{

1 in place

0 not in place

States occupancy follows Boltzmann distribution

p (x) =
exp

(

− 1
T
F (x)

)

∑

y exp
(

− 1
T
F (y)

)

High energy F (x) states are rare, low energy states frequent,
and (e.g.) F ((1, . . . , 1, 1, 1, . . . , 1)) ≤ F ((1, . . . , 1, 0, 1, . . . , 1))
This is counterbalanced by temperature T :

If T ≫ 1, all x will have nearly the same probability
If T ' 0, the x with low energy have highest probability

I.e. cooling leads to a state with low energy, but not
necessarily to the state with the lowest energy.

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Simulated Annealing: Intuition towards an algorithm

Increase the chance that a state that is close to the global energy
minimum is found by repeated heating and cooling

How and how often to cool-down and heat-up to get good results?

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Simulated Annealing: Algorithm

1 Set t = 1 (time), T = 1, x0 random, determine F (x0)

2 Generate new solution xt = Ok (xt−1) ∈ X from previous
solution by randomly chosen operator

3 Determine energy F (xt)

if F (xt) ≤ Θ (or if t > tmax), then return(solution)

4 If t > 0, determine ∆F = F (xt)− F (xt−1)

If ∆F < 0, then continue
If ∆F ≥ 0, then accept with probability ∼ exp

(

− 1

T
∆F

)

,
otherwise set xt = xt−1

5 t++ and change T in a suitable way

6 Goto 2

for additional information, see next page

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Simulated Annealing: Remarks

The initial state x0 can contain background information

The energy F evaluates the solution (cost), such as

tour length in a TSP
total mismatch in an allocation problem
number of violated clauses in a SAT problem

Operators can be anything, e.g. an operator Ok that flips the
k-th bit (for other choices, see below)

Probability: Revise the initialisation of T , if ∆F is not small.

Threshold Θ defines when the problem is considered as solved

Change temperature so that fewer and fewer less good
solutions are accepted. This does not have to be done
monotonously (see next slide).

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Simulated Annealing: How to change temperature?

If T (t) = T0
log(1+t) then an optimal solution is found with

probability 1 after sufficiently long time (Johnson, Aragon,
McGeoch, Schevon, 1989)

If temperature is reduced quicker than this, then the algorithm
may get stuck in a local minimum and may not find a global
optimum ever.

There are non-monotonous and adaptive (dependent on
improvement) schemes

The fast annealing scheme (Szu & Hartley, 1987) which uses a
Cauchy distribution instead of a Boltzmann distribution.

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



How to create new solutions?

What operators to use for the generation of new solutions?

New solutions should be selected from a certain neighbourhood

single flips as above (i.e. random change of one component)

flip small random subset of components (or within an ε-ball)

temperature-related (wider jumps and higher acceptance)

adaptive in order to “learn” directions in space that promise
high improvements

remember components of x that led to an improvement
remember correlations among the components

Practically, start with simplest operators, but also try to derive
opertors as implied by the problem

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Simulated Annealing: Conclusions

General scheme: (Mutate, Select)repeat and Check Parameters

Usually only a single agent: Population size here N = 1

Simple algorithm, easy to set up, physics background is not
required to run the algorithm

May be faster than purely random search, in particular if the
cooling scheme and the neighbourhood width are appropriately
chosen (or adapted)

Note that physical systems may not be in their minimal-energy
configuration even at low temperature, i.e. local optimal also
occur in the real world, see e.g. Prinz Rupert’s drops

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



II. Genetic Algorithms

Course: Natural Computing (week 2)

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Genetic algorithms

Natural evolution as an inspiration for problem solving

E.g. Flight: requires wings, a visual system, air-flow sensors,
smart control, efficient energy supply, light-weight body, ...

Encoding of candidate solutions in form of strings of numbers
(genotype)

Decoding of (usually binary) genotype into phenotype (discrete
or continuous) and evaluation of phenotype by fitness function

Operators: mutation, recombinations (on genotypes)

Selection and generation of off-spring

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Genetic Algorithms: How it works

Cyclic: Irrelevant whether selection first or reproduction first

Intermediate population contains identical copies

Usually large populations (e.g. N = 1000)

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Problem Solving by Genetic Algorithms

Find a representation of solutions
e.g., a description of a robot [expressed as a bit string]
x = (lengths of legs, angle limits, motor power, ...)

Define an objective function → fitness function (to be
maximised) that can be calculated for each x

Generate a population of candidate solutions (bag of strings)

Evolution scheme for the solutions:

Evaluate the candidate solutions
Choose (preferentially) high-fitness solutions
Modify some of them
Start again unless a termination criterion is met

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



A Simple Example
The Tutor Allocation Problem (TAP)

Jobs: Job1, Job2,... Jobm
Jobi is a single tutorial to be taught

subject
e.g. NAT, Introduction to Java
Programming, MLP

slot
e.g. Wednesday 4:10-5pm

place
e.g. AT 2.12

knowledge, skills required
e.g. strong at Java, some
knowledge of AI techniques

One tutor teaches each tutorial.
We have a pool of tutors to
choose from:

TutorA, TutorB , ...,TutorX
Properties of tutors

knowledge/skills

cost per hour

time preferences

location preferences

optimal number of jobs

preference for connected
time slots

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



A Simple Example
The Tutor Allocation Problem (TAP)

Solutions: A solution is an allocation of tutors to jobs, e.g.

Job 1 2 3 4 5 6 7 8 9 10

Tutor A B C D E F G H I J

Each job-tutor pairing can be given a score, based on how good the
knowledge/skill match is, e.g.

Tutor A: some C++, strong at AI

Job 1: strong Java, some AI useful

a reasonable match, though not perfect

A function fs (job, tutor) calculates a numerical score for any pairing

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



A Simple Example
The Tutor Allocation Problem (TAP)

The whole solution can be given a score, based on

sum of scores for job-tutor pairings

total cost of solution

hard constraints

tutor preferences

The total score will be calculated from the scores for the individual
parts.

The problem is to find the solution with the best score.

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



A Simple Example
Possible Methods

Exhaustive search?

5 tutors, 10 jobs = 9.8 × 106 solutions

10 tutors, 20 jobs = 1.0 × 1020 solutions

15 tutors, 30 jobs = 1.92 × 1035 solutions

...

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



A Simple Example
Possible Methods

Greedy search?

Job1 – find best tutor for this job

Job2 – find tutor to give the best combined score with the choice
for Job1

Job3 – etc.

(or v.v., i.e. starting with TutorA)

Almost certain to be sub-optimal since it commits to
choices too early

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



A Simple Example
Possible Methods

Hill-climbing local search (highest improvement variant)

Solutiont :
Job 1 2 3 4 5 6 7 8 9 10

Tutor A B E A B B D C E D

Suppose D is the worst scorer. Try A, B, C, E

Solutiont+1:
Job 1 2 3 4 5 6 7 8 9 10

Tutor A B E A B B A C E D

Continue until no improvement possible.

Prone to local maxima.

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Genetic Algorithms
How about trying a biologically inspired solution based on genetics?

1 Generate a population of solutions

Generationt :

Job 1 2 3 4 5 6 7 8 9 10

Solution1 A B E A B B A C E D

Solution2 E C B A D E C D A D
...

SolutionN C E E D D A B A C A

2 Give each solution a score, called fitness.

3 Create a new generation of solution by
1 selecting fit solutions
2 breeding new solutions from old ones and add to generationt+1

4 When a sufficiently good solution has been found, stop.

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



A Simple Genetic Algorithm

Selection (out of n solutions, greedy type):

Calculate
∑

i fs (Jobi ,Tutori) for each solution S

Rank solutions
Choose the k best scorers (1 ≤ k ≤ N)

Breeding (Mixing good solutions):

take a few of the good solutions as parents
cut in halves, cross, and re-glue (see next slide)

Mutation:

generate copies of the mixed solutions with very few
modifications
e.g. for k = N/2: two “children” for each of them

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Recombination and Mutation
How does breeding work?

1 Reproduction:
Copy solutioni unchanged into the next generation

2 Crossover (here: single cut):

Parent1:

Parent2:

Exchange of genetic material to from children

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Recombination and Mutation
How does breeding work?

3 Mutation

Change one value in a solution to a random new value:

AEBCABDDCE AEBCABDACE

Swap two values

AEBDABDCCE AEBCABDDCE

Lots of others!

Mutation is usually done after reproduction/crossover with low
probability (e.g. 1%)

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Intermediate conclusion

Together selection, mutation, and crossover can be creative:

Selection + Mutation = Continual improvement

Selection + Recombination = Innovation

The algorithm without recombination, i.e. only mutation and
selection, is known as Evolution Strategy (H.-P. Schwefel,
1960s)

Mutation is similar as in simulated annealing

Crossover can combine the best parts of present solutions

can lead to large jumps in the search space
keeps groups of good components together
recombines these groups in new ways

Representation is critical, as are the rates pc and pm

Works best for smooth fitness function and diverse population

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Outlook to a theory of GA

How does it work? The schema theorem∗ gives some
explanation

What is a schema? A non-empty subset of a string (in other
words: a string with some wildcards)
Short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generation of a genetic
algorithm.

Many variants of GA: E.g. for multi-objective problems

Performance analysis: Benchmarks, applications

General formulation, theory, convergence etc.

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Genetic Algorithms

III. The canonical GA

Course: Natural Computing (week 2)

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



The Canonical Genetic Algorithm: Conventions

1 Old population

2 Selection

3 Intermediate population

4 Recombination

5 Mutation

1 New population

one generation

A population is a (multi-) set of individuals

An individual (genotype, chromosome) is a string S ∈ AL

(A: alphabet, often: A = {0, 1})

Fitness = objective function = evaluation function.
Fitness values are often replaced by ranks (high to low)

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Roulette Wheel Selection
I. Plain variant

Mean fitness f̄ = 1
n
Σi fi =⇒ Normalized fitness: fi

f̄
(from now on short: fitness)

Each time the ball spins one
individual is selected for the
intermediate population

Stochastic sampling with
replacement

Ratio of fitness to average
fitness determines number of
offspring, i.e. a new individual is
a copy of an old individual (of
fitness fi ) with probability fi

nf̄

If fi = f̄ then the individual
“survives” with probability
1 −

(

1 − 1
n

)n

Sector (French) bets in roulette: Here,
the size of the sector represents the
relative fitness of an individual

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Roulette Wheel Selection
II. A more practical variant

Mean fitness f̄ = 1
n
Σi fi =⇒ Normalized fitness: fi

f̄

Remainder stochastic sampling

Ratio of fitness to average
fitness determines number of
offspring

If fi = f̄ : the individual survives

If fi < f̄ : survives with prob. fi
f̄

If fi > f̄ : number of offspring

int
(

fi
f̄

)

and possibly one more

with probability fi
f̄
− int

(

fi
f̄

)

Now: Only the outer wheel with
equidistant pointers spins once and
pointers in each sector are counted

Both variants are equivalent in the sense that they produce an un-
biased sample of the fitness in the population, i.e. a new individual
is a copy of an old individual (of fitness fi) with probability fi

nf̄

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



From intermediate to new population

Preparation:

Population was already shuffled by selection
(but may contain multiple copies of the same string)

Individuals are strings of equal length L

Choose a probability pc :

Crossover:

Choose a pair of individuals

With probability pc :

choose a position from 1 to L− 1
cut both individuals after this position
re-attach crossed: xyxxxyyy, abbabbab → xyxxbbab, abbaxyyy

Move the obtained pair to the new population (even if not
crossed over)

Repeat for the remaining pairs (assert n even)

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



From intermediate to new population

Preparation:

Crossover finished

Individuals are strings of length L made from k different char’s

Choose a (small) probability pm (possibly rank-dependent)

Mutation:

For all individuals (from new population)

for each position from 1 to L

with probability pm:
set the character (bit if binary) to a random value or change it
[this gives k

k−1
(i.e. twice if binary) the effect! Canonical:

binary, switch]

The obtained mutants (possibly including some unmutated
individuals) form the new population

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



The canonical GA: Summary

Evaluation function F (raw fitness) gives a score F (i) = fi to
each individual solution i ∈ {1, . . . , n}

If f̄ is the average evaluation over the whole population of n
individuals then the fitness of i is fi/f̄

Probability of selection of a solution with evaluation fi is
fi/

∑

i fi

Select two parents at random from the intermediate
population. Apply crossover with probability pc , with
probability 1 − pc copy the parents unchanged into the next
generation — reproduction. Typical value: pc = 0.7
Crossover: from the 2 parents create 2 children using 1-point
crossover. Select crossover point uniform-randomly

Mutation: Take each bit in turn and flip it with probability
pm(1 → 0 or 0 → 1). pm < 0.01 usually. Note that the
probability pm is applied differently from pc

This is one generation. Repeat for many generations until a
termination criterion is met.

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Simple Example: (bit-wise) “All-Ones”

Start with a string or zeros (or with a random bit string)

Fitness is the number of 1s (the “All-Ones” string has highest
fitness)

Selection proportional to fitness

Operators: Mutations (flip any bit) and Crossover

How long does it take to find this optimum?

Details in Tutorial 1

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



Lessons from the simple examples (see Tutorial 1)

Mutations are important!

Large populations, may have high redundancy (many identical
or very similar individuals)

if they are fit some of them will survive
can be useful for exploitation, but not for exploration

Larger populations may improve exploration, if they are diverse

Low evolutionary pressure can be helpful: The algorithm will
typically find some bits first, (e.g.) 111100 has higher fitness
than 000011, but they can be combined into the optimal
solution, however, only if some of the latter individuals survive!

Efficiency by parameter choice (“evolutionary window”) speeds
up the algorithm and is critical in non-stationary problems.

Termination can be a non-trivial problem

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



How well does this work?

Global search heuristics: Find exact or approximate solutions
to optimization problems

Small problems: Optimal solutions

Larger problems: optimal or near optimal given enough time

“Anytime” behaviour of the algorithm: The best so far solution
can be used if good enough

Runs well on parallel machines

Adding new constraints is easy: Edit or penalise

Used in a multitude of real applications in many fields such as
Bioinformatics, computational science, engineering, robotics,
economics, chemistry, manufacturing, mathematics, physics, ...

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



The reMAINning Issues

How do I represent (encode) a solution?

How should I rate solutions for fitness?

What initialisation is preferable?

How large should the population of solutions be?

How much selection pressure should I apply?

What form of crossover should I use?

What form of mutation should I use?

Should the population be structured (“islands”)?

Should any form of elitism be used?

Termination should not be forgotten

Is there anything in GA I can be sure about (e.g. convergence)?

These are examples for questions to be discussed in the Q&A sessions

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh



∗Bonus slide: Darwin and beyond

The main ideas in On the Origin of Species (1859) have influenced
many other areas:

Theory of natural evolution: Genetics, genomics,
bioinformatics

Evolution of individual learning abilities (Baldwin, 1896)

Artificial immune systems, resistances in viruses and bacteria

Evolution of ideas, e.g. in literature (Stanislaw Lem: The
Philosophy of Chance, 1968)

Memetics (R. Dawkins: The Selfish Gene, 1976)

Neural Darwinism (Gerald Edelman: The Theory of Neuronal
Group Selection, 1975 & 1989; less convincing, but inspiring!)

Neuroevolution (later!)

Computational finance, markets, agents (later, but just a bit!)

Natural Computing 2024/25, week 2, Michael Herrmann, School of Informatics, University of Edinburgh


