
Course: Natural Computing
2∗ Ant Colony Optimisation

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



ACO
Biological inspiration: Ant find the shortest path between their nest
and a food source using pheromone trails.

Ant Colony Optimisation is a population-based search technique
for the solution of combinatorial optimisation problem which is
inspired by this behaviour.

Marco Dorigo (1992). Optimization, Learning and Natural Algorithms. Ph.D.Thesis,
Politecnico di Milano, Italy, in Italian. “The Metaphor of the Ant Colony and its
Application to Combinatorial Optimization”

Based on theoretical biology work of Jean-Louis Deneubourg (1987) From individual
to collective behavior in social insects. Birkhäuser Verlag, Boston.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



What, how?

Real ants find shortest routes between food and nest
Some species of ants hardly use vision
They lay pheromone trails, chemicals left on the ground, which
act as a signal to other ants: STIGMERGY from stigma
(mark, sign) + ergon (work, action), Pierre-Paul Grassé (1959)
If an ant decides, with some probability, to follow the
pheromone trails, it itself lays more pheromone, thus
reinforcing the trail.
The more ants follow the trail, the stronger the pheromone,
the more likely ants are to follow it.
Pheromone strength decays over time (half-time: a few
minutes)
Pheromone builds up on shorter paths faster (it doesn’t have
so much time to decay), so ants start to follow it.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Artificial Ant Systems

Pheromones cannot be the only source of information. Their
distribution should depend in some sense on the
“environment”: local heuristics
Pheromone trail: data structure for “memory” of good
solutions
Ant trails are the solutions
Pheromone placement by the ant: incorporation of information
into the pheromone trail
Conventions for the algorithm

discrete time
few foraging ants
goal is shortest tour length
pheromone laid after the event

So can we apply them to an optimisation problem?

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Example: Travelling Salesperson Problem

Find the tour that minimises the distance travelled when visiting all
towns.

A solution can be represented as a permutation of the list of cities.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Example: Ant System for the TSP

Each ant builds its own tour from a starting city
Each ant chooses a town to go with a probability: This is a
function of the

town’s distance and
the amount of pheromone on the connection edge

The two factors are combined in the Probability Rule (see
below) that provides a stochastic decision to go to city j from
city i

Transitions to already visited towns are disallowed till tour
completes to guarantee legal tours (keep a “taboo” list)
When tour completed, pheromone levels are updated on each
edge visited

See also: Dorigo and Gambardella (1997) Ant Colony system.
A cooperative approach to the TSP: IEEE TA Evol. Comput. 1:1, 53-66.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Probability Rule

p (i , j) =
τ (i , j)α η (i , j)β∑

k∈Allowed τ (i , k)α η (i , k)β

Strength of pheromone τ (i , j) is favourability of j following i
Emphasises “global goodness”: The pheromone matrix
Visibility η (i , j) = 1/d (i , j) is a simple heuristic guiding
construction of the tour. In this case it’s greedy: The nearest
town is the most desirable (seen from a local point of view)
α and β are constants, e.g. α = 1 and β = 2∑

k∈Allowed normalise over all the towns k that are still
permitted to be added to the tour, i.e. that are not on the
tour already.
τ and η introduce a trade-off of global and local factors in
construction of the tour.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Pheromone representing promising options

Pheromone trail evaporates a small amount after each iteration

τ (i , j) = ρτ (i , j) + ∆τij

where 0 < ρ < 1 is an evaporation constant, describing what
fraction of much pheromone is left after one time step.
Sometimes the evaporation rate (1− ρ) is used instead.
The density of pheromone laid on edge (i , j) by the m ants at
that time step is

∆τij =
m∑

k=1

∆τkij

∆τkij = Q/Lk if kth ant used edge (i , j) in its tour, else 0. Q
is a constant and Lk is the length of k ’s tour. Pheromone
density for k ’s tour.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Ant systems: Algorithm

Initialise: Set pheromone strength to a small value
Transitions chosen to trade off visibility (choose close town
with high probability — greedy) and trail intensity (if there’s
been a lot of traffic the tail must be desirable).
In one iteration all the ant build up their own individual tours
(so an iteration consists of lots of moves/town choices/time
steps — until the tour is complete) and pheromone is laid
down once all ants have completed their tours.
Remember: We’re aiming for the shortest tour — and expect
pheromone to build up on the shortest tour faster than on the
other tours

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Ant systems: Algorithm

Position ants on different towns, initialise pheromone
intensities on edges
Set first element of each ant’s taboo list to be its starting
town.
Each ant moves from town to town according to the
probability p (i , j)

After n moves all ants have a complete tour, their taboo lists
are full; so compute Lk and ∆τkij . Save shortest path found
and empty taboo lists. Update pheromone strengths.
Iterate until tour counter reaches maximum or until stagnation
(all ants make the same tour)

Can also have different pheromone-laying procedures, e.g. lay a
certain quantity of pheromone Q at each time step, or lay a certain
density of pheromone Q/dij at each time step.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Variants: Ant System (AS)
Pheromone trails: Initialise τij = τ0 � 1

τij ← ρτij +
m∑

k=1

∆τkij

∆τkij =

{
1
Lk

if ant k used edge (i , j) in its tour
0 otherwise

Probability rule for ant k (1 ≤ k ≤ m)

p
(
cij |ski

)
=


ταij η

β
ij∑

cim∈N(ski ) ταij η
β
ij

if j ∈ N
(
ski
)

0 otherwise

cij : graph edge, ski partial solution of ant k so far incl. arrival to i ,
N set of possible continuations of ski (e.g. towards j if j ∈ N

(
ski
)
.

see: Dorigo et al. 1991/92 and www.scholarpedia.org/article/Ant_colony_optimization

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Variants: Ant Colony System (ACS)
Pheromone trails: Initialise τij = τ0 � 1

Local pheromone update τij ← ρτij +
∑n

k=1 ∆τ0 is now replaced by
global update (best ant contribution):

τij ← ρτij + ∆τbestij

∆τbestij =

{
1

Lk∗
if best ant k∗ used edge (i , j) in its tour

0 otherwise

Pseudorandom proportional rule: Use probability rule with prob. q0

p
(
cij |ski

)
=


ταij η

β
ij∑

cim∈N(ski ) ταij η
β
ij

if j ∈ N
(
ski
)

0 otherwise

or make a random (admissible) transition otherwise.
see: Dorigo and Gambardella 1997
Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Variants: Max-Min Ant System (MMAS)
Best ant adds to the pheromone trails (iteration best or best so far)

Initialise e.g. τij = τmax

τij ← ρτij + ∆τbestij

Pheromone production by the best ant only

∆τbestij =

{
1

Lk∗
if best ant k∗used edge (i , j) in its tour

0 otherwise

Minimum and maximum value of the pheromone are explicitly
limited by τmin and τmax (truncation).

Pseudorandom proportional rule

p
(
cij |ski

)
=


ταij η

β
ij∑

cim∈N(ski ) ταij η
β
ij

if j ∈ N
(
ski
)

0 otherwise

see: Dorigo and Gambardella 1997
Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Variants: Max-Min Ant System (MMAS)

Comments

τmin is small and guarantees continuous exploration (may be
reduced in order to enforce convergence.
τmax causes all non-visited regions to be equally attractive
(pheromone update can be restricted to the links that were actually visited, but
you will need fast evaporation in this case)

Theoretical value of τmax = (L∗ (1− ρ))−1, if L∗ is the
shortest tour length. Can be used for “optimistic” initialisation.
Smaller values can encourage exploration.
If τmax is not very large it can prevent over-exploration of
frequently used regions or may be set to the largest pheromone
value that is possible in the given ant system.
In the face of stagnation the paths can reinitialised by τmax
In MMAS as well as ACS, the best ant’s contribution can also
be combined with from other ants.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Example: Bin Packing Problem

Given N items of various
weights wi , and bins of a
fixed capacity C

Lower bound on the number
of bins

Λ0 =

⌈∑
wi

C

⌉
E.g. 10 items of wi = 0.6C ,
then Λ0 = 6,
but Λ = 10 bins are needed.
Task: Minimise slack
(Λ− Λ0) or ΛC −

∑
wi

Greedy: Pack big items first (?)

(wi ) = (6, 6, 3, 3, 2, 2, 2, 2, 2, 2)

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Bin Packing: Representation

Bin packing is a grouping problem (TSP was an ordering
problem)
Ants start with all bins empty and instead of walking from city
to city, they add item by item
Items with the same weight are not distinguished
Pheromone level τij can indicate that

item i is in bin j (standard) or that
items i and j are in the same bin (encourages grouping):
Choose new item j by

∑
i τij (and local heuristic) and increase

pheromone level each time i and j are in the same bin.

Taboo rules make sure that the number of items is eventually
correct

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Bin Packing Algorithm

Local heuristics: prefer largest item
Improve solutions by pheromone update based on minimal
slack
As in the min−max variant, use minimal pheromone level τmin

for continued exploration
Only best ant increases pheromone trail
alternate global best and iteration-best ant for pheromone
update

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Bin Packing: Fitness function

Adding a bin has a drastic effect on the evaluation
Measure instead how full bins are

f (s) =

∑Λ
λ=1

∑
i∈Binλ

(
wi
C

)2
Λ

Minimise number of bins Λ

Promotes full bins and spare capacity not being spread among
many bins.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Bin Packing: Local Search

For local search, open nh bins for redistribution of their “free”
items
Items in the remaining bins are replaced by larger “free” items
whenever possible.
Trying all subsets of “free” items is time-consuming. Try
instead to replace (e.g.) any two items by any two “free” ones,
then two by one “free” item, then one by one “free” item.
This give fuller bins and smaller items become available which
are inserted greedily
Repeat until no further improvement is possible

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Bin Packing: Parameters

N = 10
β = 2
ρ = 0.75
τmin = 0.001
T = 50, 000
nh = 3

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Ant Bin Packing: Conclusion

Performance is not overwhelming
Local heuristic is quite cumbersome: ACO seems to direct or
initialise local heuristic
Experience from special case of “triplet” bin packing problem

items are either a bit smaller or a bit larger than 1
3C

such that a larger one leaves space for two smaller ones, but
two larger ones do not leave space for one small item.
deceptive (in terms of local heuristics)
AntBin performance is poor in this case!

ACO an be useful in hybrid algorithms

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



ACO: Parameters
Main parameters

Number of ants N (typically N = 10 . . . 20)
Evaporation constant ρ in pheromone update rule (e.g.
ρ = 0.9, and even closer for one for longer runs)
Power α in probability rule (typically α = 1)

The following occur in variants of ant systems

min and max of pheromone level τmin, τmax

probability of random moves ε

The following are not tunable

∆τkij is fixed by the choice of the cost function L and by the
constant Q: Sometimes Q is varied: Q = 10 if a new “best”
was found and Q = 1 otherwise.
Initial pheromone level τ0 is not critical because of
normalisation, but can be used to implant prior knowledge
β should be consistent with the choice of the local heuristics

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Applications

Intuitively, ACO applications include problem featuring sequential
decision marking, such as scheduling, route planing, and any
problems that can be brought into this form

Data stream optimisation
Cloud computing
Autonomous driving
Project scheduling
Integer programming
Metro speed profile
optimisation

Bus routes, garbage
collection, delivery routes
Machine scheduling
Protein folding
Online network
optimisation
Composition of products

In some of these cases, reinforcement learning tends to be prefer-
able. Many proposed ACO applications were not practically realised.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



ACO: (Intermediate) Conclusion

Cooperative scheme: Building a common solution
Prone to premature convergence (can be controlled by minimal
pheromone level, by adjusting evaporation rate or reinitialising
the pheromone levels)
The strength of ACO is the flexible merging of solutions. This
is at the same time a weakness: the components of the
solution are chosen independently. In other words: the
usefulness of ACO depends on the problem.
While the original AS is limited to simple dimensions, there are
variants of ACO which are quite useful in applications.
Why do we need several variants? Some elements are
important, while other should be used flexibily, to catch the
specificity of the problem.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Course: Natural Computing
*2. Brief Tour Through Reinforcement

Learning

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Overview

Reinforcement Learning

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Reinforcement Learning in a nutshell (20th century)

Reinforcement Learning aims at enabling an agent to act
The agent chooses an action based on its current state
The map from states to actions is called policy
A state is a vector which is supposed to contain all information
that is available to the agent
The action can lead to a change of the state

E.g. the state can be the position of the agent, actions are
moves (E, S, W, N), and the agent may need to learn which
move to make at which place in order to reach a goal position

An action was suitable if the agent is given a reward
The reward may be delayed, i.e. it may arrive only after the
agent has performed other actions: What was the reward for?

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Metaheuristics and reinforcement learning

ACO (Dorigo, 1992) is known to be similar to Reinforcement
Learning (RL; Sutton, Barto, 1998). An attempt to make this
explicit is the Ant-Q algorithm (Gambardella, Dorigo, 1995)
State transitions

The probability rule in ACO determines the probability of a
transition from state s to s ′

The policy in RL states the probability to perform action a in
state s that will lead (for deterministic transitions) to state s ′

The probability rule in ACO is a product of local heuristics and
pheromone trail
RL uses the sum of immediate reward and the discounted
value, but together with the exponential form of Boltzmann
exploration this the effect is similar as in ACO.

For both ACO and RL, many more or less similar variants exist
Most ACO and some RL variants are Monte Carlo algorithms

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Reinforcement Learning and MHO

In MHO, a state corresponds to a solution, individual, particle;
the policy is any method to change the current solutions
Rewards in RL correspond to fitness in MHO; rewards are
often given for part-solutions, fitness for a full solution
In most RL algorithms a single agent is considered, in MHO
usually populations of solutions
RL requires the problem to be Markovian, MHO is not explicit
about this

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Reinforcement Learning and MHO

RL and MHO are similar, but are not the same:
RL is an approximation to (local) dynamical optimisation, i.e.
the optimisation of a control process
MHO is a form of global optimisation, i.e. usually the
optimisation of a static problem

Convergence proofs (in the sense of finding the global
optimum) in RL are as impractical as in MHO
Nevertheless, it is possible to combine RL and MHO in
non-trivial ways

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Metaheuristics and reinforcement learning

In the past, few attempts were made to combine MHO and RL

L. M. Gambardella, M. Dorigo, (1995) Ant-Q: A reinforcement
learning approach to the traveling salesman problem.
J. Boyan, A. Moore (2001) Learning evaluation functions to
improve optimization by local search.
A. Nareyek (2003) Choosing search heuristics by non-
stationary reinforcement learning.
A. Eiben, M. Horvath, W. Kowalczyk, M. Schut (2006)
Reinforcement learning for online control of evolutionary
algorithms.
R. Battiti, P. Campigotto (2008) Reinforcement learning and
reactive search: An adaptive max-SAT solver.

This is not a reading list. You may like to check back if you take an RL course.

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh



Reinforcement Learning (21st century)

In 21st century policy gradients and deep RL were introduced
The policy, i.e. the probability what action to take next, is now
a parametrised function of the state. Policy gradient methods
aim at changing the parameters in order to improve the policy
The policy as a function of the state can be represented by a
deep neural network, i.e. the parameters that represent the
policy are weights of a neural network
Also the map from (e.g.) an input image to the state can be
represented by a neural network
Also the fitness function (reward) can be calculated by a
neural network

Implications for MHO?

Natural Computing 2024/25, week *2, Michael Herrmann, School of Informatics, University of Edinburgh


