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o last week: No free lunch theorem
@ Now: Schema theorem and building blocks

o Next week: Convergence, parameters etc.
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Reminder: The Canonical Genetic Algorithm

o
2]
o
o

Old population
Roulette-wheel selection
Intermediate population

Single point recombination with
rate p. (per pair of individuals) one generation

Mutation with rate pp, (per
position in all strings)

o

@ New population
(repeat until termination)

@ A population is a (multi-) set of individuals

@ An individual (genotype, chromosome) is encoded by a string
S € AL (A: alphabet; canonical: A = {0, 1}, L fixed)

@ Normalised fitness represents the objective of the problem
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Search Spaces as Hypercubes

Binary encoding: solution ¢ € {0,1}"

e.g. ¢=(0,1,0) for L =3

Sets of solutions:
(0, *,0) denotes a line

(*,1, %) denotes a plane
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Schemata (J. Holland, 1975)

@ A schema is a string that contains wildcards (“*"), but not
only asterisks, i.e. schema H € {0,1,%}"\ {x}*

@ A schema defines a set of solutions (which coincide at the
no-wildcard symbols)

o All (inheritable) features of the phenotype are encoded by
schemata

@ The order of the schema is the number of bits that are actually
there, e.g. **01***1 is a schema of order 3 (and length 8)

o There are 3- — 1 different schemata (not counting the schema
of order 0: ** ... *)

o Each solution is part of 2L hyperplanes (or 2L — 1 schemata)

@ Implicit parallelism: Each individual samples many hyperplanes
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How do GAs work?

The schema theorem (J. Holland, 1975)

@ How does selection improve fitness?

@ What is the fate of the schemata in face of selection, mutation
and and crossover?

Goal:

E(m(H,t+1))> a(fﬁ’)t) m(H,t) (1 _ Pc%) (1 — pm)°H)

@ His a schema
@ t counts generations

@ m is the number of individuals carrying a schema in a
generation

@ E is the mathematical expectation

@ pc and pp, should be clear, for i, f, o, d, L see below
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The Schema Theorem

(before starting the proof)

Consider first an individual solution ¢; € AL:
f (ci, t): fitness of solution ¢; in generation t

m(c;, t): number of copies of ¢; in the population in generation t

f (t): average fitness of the population in generation t

E(m(ci,t+1) = 82m(ci, )

= %27:1 f(ci)

population size

f;?;)” the probability of F
selecting ¢; n:

So above-average-fitness strings get more copies in the next

generation and below average fitness strings get fewer.

1
n

Natural Computing 2024 /25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh



The Schema Theorem
Growth of fit subpopulations

Suppose ¢; has above-average fitness of (1 + d) f (i.e. 6 > 0). Then

E(m(ci,t+1)) = "@Dm(c,t) = CD (e t) = (1 + 8)m (e, 1)

If § is constant then m (c;, t)=(1+ 6)*m(c;,0): Exponential
growth
If m(c;) is small compared to the population size n then § can

indeed be considered constant = Innovations that cause an
increase in fitness spread quickly in the population.

Growth is self-limiting: The relative advantage shrinks because with
more fit individuals also the average fitness increases= Fit solution
tend to dominate the population (crossover and mutation being
ignored for the moment).

Analogously: Exponential decay for § < 0.
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Fitness of Schemata

If the solutions ¢;, ¢j, ¢, ... all sample the same schema H their
fitnesses define the (average) fitness of H at time ¢t

1
g(H, t) = ———— ) fF(c,t
(.0 = iy om0 ()
m(H, t) is the number of instance of H in the population at time t

Note, that the sum is not taken over all possible ¢; € H but only over those
which are actually present in the population.

How many instances of H can be expected after selection?

a(H,t)

E(m(H,t+1)) = r(E( 0 m(H,t)
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Selection of Fit Schemata: Example

What happens when we select and duplicate strings based of fitness?

Suppose the solutions c;,cj,cx sample the schema H, i.e. ¢; € H etc
Further suppose the average fitness in the population is f = 1

Using the formula for solutions:
f(ci,t) =20, m(c,t)=2 = E(m (c,,t+1))—2><i%§:4
f(c,t) =25 m(c,t)=2 = E(m(c,t+1))=2x35=5
f(ck,t) =15 m(ck, t) =2 = E(m(c,t+1)=2x713=3
All are fitter than average, all increase in their number in the population
For the schema H (assume sampled only byc;,¢j,cx): m(H,t) =6,
0(H,t)=2(2%x20+2x25+2x15)=2
0(H,t+1)=24(4x20+5x25+3x 1.5) =2,083

Number of samples in this hyperplane is expected to increase, but.
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Disruption of Schemata

Crossover and mutation are both disruptive and constructive with
regards to schemata. consider only disruptive effects.

Crossover:

11%***xx*xx Probability of disruption by
1%k %k crossover?

Mutation:

110010011101 ** Many disruptive possibilities
11k kkk (] kokokok k% Only 4 disruptive possibilities
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Schema Jargon

Number of defined bits is the order o (H) of the schema H
10**110* order 5
*¥ox*11** order 3

Defining length is the distance d (H) between the first and the
last bit of the schema (i.e. number of potential cuts)

10**110% defining length 6
¥Qx¥*x11*x* defining length 4

i.e. bit position of last 0/1 minus bit position of first 0/1
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Disruptive Effects of Crossover

@ 1-point crossover with probability p.

e d(H) is the defining length of H
H=**10*1**= d(H)=3

@ In a single crossover there are L — 1 crossover points:
10100100 7 crossover points

o Of these, d (H) points will disrupt the schema

d(H
Pr (disruption) = pCL(_l)

o Higher chance of survival if d (H) is low
Example: Suppose p. = 0.8, d (H) =3, L =100 =
Pr (disruption) = 0.8 x 13; = 0.024
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Disruptive Effects of Mutation

Single-point mutation with probability p,, (applied to each bit
in turn)

o (H) is the order of H
H=*%10*1%*= o(H)=3
H=1110*1*1= o(H)=6

@ Probability that a bit survives is 1 — pp,

@ Flipping a defined bit always disrupts a schema, so the
probability that the schema survives is

Pr (survival) = (1 — py,)°t")

@ Best chances for surviving crossover and mutation when d (H)
and o (H) are both low
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Towards the Schema Theorem

First Component of the Schema Theorem

a(H,t)
E Ht+1)=—=—"m(H,t
(m(H, 1) = S m (K,
The other parts of the Schema Theorem

Pr (surviving crossover) =1 — p.———

Pr (surviving mutation) = (1 — Pm)O(H)
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The Schema Theorem

Schemata are not only being destroyed, but can also be created
though crossover and mutation. So we should write an inequality

Goal:
a(H,t) d(H) (H)
E(m(H,t+1)) = &0 m(H,¢) (1 - Pcﬁ> (1= pm)°
o e ((H,t)is large: fit
Highest e d(H) is small: short
when

@ o(H) is small: small number of defined bits

The Schema Theorem in words:
Short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generation of a genetic algorithm.
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Consequences of the Schema Theorem

@ How do schemata arise? Constructive role of mutation and
crossover

@ Which genes belong to a good schema?
The algorithm does not easily distinguish important genes
from “hitchhikers”

@ How well does the expectation describe the population?

e Gradual reduction of relative fitness advantage:
Other ways to change the fitness?
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The Building Block Hypothesis

During crossover, these “building blocks” become exchanged and
combined

So the Schema Theorem identifies the building blocks of a good
solution although it only addresses the disruptive effects of
crossover (and the constructive effects of crossover are supposed to
be a large part of why GA work).

How do we address the constructive effects?

Building block hypothesis: A genetic algorithm seeks optimal
performance through the juxtaposition of short, low-order, high-
performance schemata, called the building blocks.

Crossover combines short, low-order schemata into increasingly fit
candidate solutions

@ short low-order, high-fitness schemata
@ “stepping stone” solutions which combine H; and H; to create
even higher fitness schemata
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The Building Block Hypothesis

Arguments against the validity of the BBH

o Collateral convergence: Once the population begins to
converge, even slightly, it is no longer possible to estimate the
static average fitness of schemata using the information
present in the current population.

@ Fitness variance within schemata: In populations of realistic
size, the observed fitness of a schema may be arbitrarily far
from the static average fitness, even in the initial population.

e Compositionality: Superposition of fit schemata does not
guarantee larger schemata that are more fit and these are less
likely to survive.

Adapted from John J. Grefenstette. Deception Considered Harmful. 1992
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Theory of Genetic Algorithms

Course: Natural Computing (week *5)
(1) GA Variants
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Variants of GAs

Selection

@ Roulette wheel (see above)

@ Non-linear distortions of the fitness function (e.g. steeper for
better fitnesses)

e Tournament selection (especially for relative fitnesses, e.g.

evolving a strategy for a game

e select a pair of individual and keep two copies of the winner of
the tournament

o keep one copy of the winner plus with probability p; a copy of
the winner and with probability 1 — p; a copy of the looser

@ Elitism: best individuals are moved unchanged to the next
generation

@ 'Pocket’ algorithms remember the current best

@ Insertion of a few new random individuals in each generation
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Variants of GAs

Crossover

@ 1-point
@ 2-point, ..., n-point

e Cut and splice (a different cutting point in each of the parents,
children of different length)

@ Half-uniform crossover scheme (exactly half of the
non-matching bits are swapped)

More than two parents
Respecting problem structure (and possibly schemata)

Elitist crossover

Islands: crossover mostly within groups (more generally:
topology or networks)
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Variants

Mutation

@ Point mutation: flip or random

e Exchange two randomly chosen characters (perhaps coupled
mutations)

@ Inversion
@ Respecting problem structure (and possibly schemata)

e Fitness-dependent (e.g. mutation rate zero for current best
and maximal for worst)

@ Adaptive mutation rates
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Tournament selection vs. Roulette Wheel selection

@ Roulette Wheel selection (see above)
o May be used on (raw) fitness values or rank (here: rank)
o Chance of survival in a single run (for rank i):
p = (21)/(n2+ n) (at least one from nruns P=1— (1 — p)n
for the first variant)
o Best (rank n): p=2/(n+1), worst (rank 1): p=2/(n2+ n)
e Roulette wheel with elitism is fairly similar to tournament

e Tournament selection (n winners from n tournaments)

o Chance of survival depends on rank: P = (i —1)/(n—1) (rank
is used for analysis and does not need to be known for the
algorithm)
selection for tournament may also depend on rank
best (rank n) individual beats any other: P =1
worst (rank 1) P =0
Outcome of a tournament may be stochastic (add elitism)
Main advantage: Can be used if fitness function cannot be
calculated explicitly, e.g. in the evolution of chess players
o Better parallelisable
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Making it better

@ Start the GA from good initial position (seeding). If you know
roughly where a solution might lie, use this information.

@ Use a representation close to the problem: Does not have to be
a fixed length linear binary string — avoid the Hamming Cliff*

@ Use operators that suit the representation chosen, e.g.
crossover only in specific positions

@ Run on parallel machines: Island model GA (Evolve isolated
subpopulations, allow to migrate at intervals)

@ Reduce mutation/crosssover towards the end of run

Reading: Mitchell Chapter 4

1 .
) a transition from 011111 to 100000 is small for the phenotype, but may be hard to find for the GA
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Behaviour near the optimal solution

How to improve good individuals to perfect ones? (“exploitation”)

Problem: [De Jong] Say range of payoff values is [1,100]. Quickly
get population with fitness say in [99,100]. Selective differential
between best individual and rest, e.g. 99.988 and 100 is very small.
Why should GA prefer one over another?

@ Dynamically scale fitness as a function of generations or fitness
range (scale minimal fitness in the population to zero)

@ Use rank-proportional selection to main a constant selection
differential. Slows down initial convergence but increases
“exploitation” in the final stages.

o Elitism. Keep best individual so far, or, selectively replace
worst members of population

e Change parameters to shift balance from exploration at start
to exploitation towards the end
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Conclusions on GA

@ In order to be successful GA algorithms need well structured
problems containing building blocks that are indicative of good
fitness and large populations (as quasi-models of the problem
structure).

@ GAs can be useful in setting the basic structure or design of a
task by choosing among components that are produced by
other approaches.

@ GAs are far from reaching the power of natural evolution.
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