
Course: Natural Computing
*5. Theory of Genetic Algorithms

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177

Theory

last week: No free lunch theorem
Now: Schema theorem and building blocks
Next week: Convergence, parameters etc.

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Reminder: The Canonical Genetic Algorithm

1 Old population
2 Roulette-wheel selection
3 Intermediate population
4 Single point recombination with

rate pc (per pair of individuals)
5 Mutation with rate pm (per

position in all strings)
1 New population

(repeat until termination)

one generation

A population is a (multi-) set of individuals
An individual (genotype, chromosome) is encoded by a string
S ∈ AL (A: alphabet; canonical: A = {0, 1}, L fixed)
Normalised fitness represents the objective of the problem

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Search Spaces as Hypercubes
Binary encoding: solution c ∈ {0, 1}L

⇒ Each Solution is a corner of the hypercube.

e.g. c = (0, 1, 0) for L = 3 or c = (0110) for L = 4

Sets of solutions:
(0, ∗, 0) denotes a line
(∗, 1, ∗) denotes a plane

From a tutorial by Erik D. Goldman GECCO09

(1, ∗, ∗, ∗) denotes a subcube.

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Schemata (J. Holland, 1975)

A schema is a string that contains wildcards (“*”), but not
only asterisks, i.e. schema H ∈ {0, 1, ∗}L \ {∗}L

A schema defines a set of solutions (which coincide at the
no-wildcard symbols)
All (inheritable) features of the phenotype are encoded by
schemata
The order of the schema is the number of bits that are actually
there, e.g. **01***1 is a schema of order 3 (and length 8)
There are 3L − 1 different schemata (not counting the schema
of order 0: ** . . . *)
Each solution is part of 2L hyperplanes (or 2L − 1 schemata)
Implicit parallelism: Each individual samples many hyperplanes

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

How do GAs work?
The schema theorem (J. Holland, 1975)

How does selection improve fitness?
What is the fate of the schemata in face of selection, mutation
and and crossover?

Goal:

E (m (H, t + 1)) ≥ û(H,t)

f̄ (t)
m (H, t)

(
1− Pc

d(H)
L−1

)
(1− pm)o(H)

H is a schema
t counts generations
m is the number of individuals carrying a schema in a
generation
E is the mathematical expectation
pc and pm should be clear, for û, f̄ , o, d , L see below

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

The Schema Theorem
(before starting the proof)

Consider first an individual solution ci ∈ AL:

f (ci , t): fitness of solution ci in generation t

m (ci , t): number of copies of ci in the population in generation t

f̄ (t): average fitness of the population in generation t

E (m (ci , t + 1)) = f (ci ,t)

f̄ (t)
m (ci , t)

1
n

f (ci ,t)

f̄ (t)
the probability of

selecting ci

f̄ = 1
n

∑n
i=1 f (ci)

n: population size

So above-average-fitness strings get more copies in the next
generation and below average fitness strings get fewer.

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

The Schema Theorem
Growth of fit subpopulations

Suppose ci has above-average fitness of (1 + δ) f̄ (i.e. δ > 0). Then

E (m (ci , t + 1)) = f (ci)

f̄
m (ci , t) = (1+δ)f̄

f̄
m (ci , t) = (1 + δ)m (ci , t)

If δ is constant then m (ci , t)=(1 + δ)tm(ci , 0): Exponential
growth

If m (ci) is small compared to the population size n then δ can
indeed be considered constant ⇒ Innovations that cause an
increase in fitness spread quickly in the population.

Growth is self-limiting: The relative advantage shrinks because with
more fit individuals also the average fitness increases⇒ Fit solution
tend to dominate the population (crossover and mutation being
ignored for the moment).

Analogously: Exponential decay for δ < 0.

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Fitness of Schemata

If the solutions ci , cj , ck , ... all sample the same schema H their
fitnesses define the (average) fitness of H at time t

û (H, t) =
1

m (H, t)

∑
ci∈H

m (ci , t) f (ci , t)

m (H, t) is the number of instance of H in the population at time t

Note, that the sum is not taken over all possible ci ∈ H but only over those
which are actually present in the population.

How many instances of H can be expected after selection?

E (m (H, t + 1)) =
û (H, t)

f̄ (t)
m (H, t)

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Selection of Fit Schemata: Example
What happens when we select and duplicate strings based of fitness?

Suppose the solutions ci ,cj ,ck sample the schema H, i.e. ci ∈ H etc.

Further suppose the average fitness in the population is f̄ = 1

f (ci , t) = 2.0, m (ci , t) = 2
f (cj , t) = 2.5, m (cj , t) = 2
f (ck , t) = 1.5, m (ck , t) = 2

Using the formula for solutions:
⇒ E (m (ci , t + 1)) = 2× 2.0

1.0 = 4
⇒ E (m (cj , t + 1)) = 2× 2.5

1.0 = 5
⇒ E (m (ck , t + 1)) = 2× 1.5

1.0 = 3

All are fitter than average, all increase in their number in the population.

For the schema H (assume sampled only byci ,cj ,ck): m (H, t) = 6,

û (H, t) = 1
6 (2× 2.0 + 2× 2.5 + 2× 1.5) = 2

û (H, t + 1) = 1
12 (4× 2.0 + 5× 2.5 + 3× 1.5) = 2, 083

Number of samples in this hyperplane is expected to increase, but...

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Disruption of Schemata

Crossover and mutation are both disruptive and constructive with
regards to schemata. consider only disruptive effects.

Crossover:

1 1 * * * * * *

1 * * * * * * 1

Probability of disruption by
crossover?

Mutation:

1 1 0 0 1 0 0 1 1 1 0 1 * *

1 1 * * * * 0 1 * * * * * *

Many disruptive possibilities

Only 4 disruptive possibilities

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Schema Jargon

Number of defined bits is the order o (H) of the schema H

1 0 * * 1 1 0 * order 5

* 0 * * 1 1 * * order 3

Defining length is the distance d (H) between the first and the
last bit of the schema (i.e. number of potential cuts)

1 0 * * 1 1 0 * defining length 6

* 0 * * 1 1 * * defining length 4

i.e. bit position of last 0/1 minus bit position of first 0/1

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Disruptive Effects of Crossover

1-point crossover with probability pc

d (H) is the defining length of H
H =* * 1 0 * 1 * * ⇒ d (H) = 3
In a single crossover there are L− 1 crossover points:
1 0 1 0 0 1 0 0 7 crossover points
Of these, d (H) points will disrupt the schema

Pr (disruption) = pc
d (H)

L− 1

Higher chance of survival if d (H) is low

Example: Suppose pc = 0.8, d (H) = 3, L = 100 ⇒

Pr (disruption) = 0.8× 3
100 = 0.024

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Disruptive Effects of Mutation

Single-point mutation with probability pm (applied to each bit
in turn)

o (H) is the order of H
H = * * 1 0 * 1 * * ⇒ o (H) = 3
H = 1 1 1 0 * 1 * 1 ⇒ o (H) = 6

Probability that a bit survives is 1− pm

Flipping a defined bit always disrupts a schema, so the
probability that the schema survives is

Pr (survival) = (1− pm)o(H)

Best chances for surviving crossover and mutation when d (H)
and o (H) are both low

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Towards the Schema Theorem

First Component of the Schema Theorem

E (m (H, t + 1)) =
û (H, t)

f̄ (t)
m (H, t)

The other parts of the Schema Theorem

Pr (surviving crossover) = 1− pc
d (H)

L− 1

Pr (surviving mutation) = (1− pm)o(H)

E (m (H, t + 1)) =
û (H, t)

f̄ (t)
m (H, t)

(
1− pc

d (H)

L− 1

)
(1− pm)o(H) ???

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

The Schema Theorem

Schemata are not only being destroyed, but can also be created
though crossover and mutation. So we should write an inequality

Goal:

E (m (H, t + 1)) ≥ û(H,t)

f̄ (t)
m (H, t)

(
1− Pc

d(H)
L−1

)
(1− pm)o(H)

Highest
when

û (H, t) is large: fit
d (H) is small: short
o (H) is small: small number of defined bits

The Schema Theorem in words:
Short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generation of a genetic algorithm.

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Consequences of the Schema Theorem

How do schemata arise? Constructive role of mutation and
crossover
Which genes belong to a good schema?
The algorithm does not easily distinguish important genes
from “hitchhikers”
How well does the expectation describe the population?
Gradual reduction of relative fitness advantage:
Other ways to change the fitness?

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

The Building Block Hypothesis
During crossover, these “building blocks” become exchanged and
combined

So the Schema Theorem identifies the building blocks of a good
solution although it only addresses the disruptive effects of
crossover (and the constructive effects of crossover are supposed to
be a large part of why GA work).
How do we address the constructive effects?

Building block hypothesis: A genetic algorithm seeks optimal
performance through the juxtaposition of short, low-order, high-
performance schemata, called the building blocks.

Crossover combines short, low-order schemata into increasingly fit
candidate solutions

short low-order, high-fitness schemata
“stepping stone” solutions which combine Hi and Hj to create
even higher fitness schemata

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

The Building Block Hypothesis
Arguments against the validity of the BBH

Collateral convergence: Once the population begins to
converge, even slightly, it is no longer possible to estimate the
static average fitness of schemata using the information
present in the current population.
Fitness variance within schemata: In populations of realistic
size, the observed fitness of a schema may be arbitrarily far
from the static average fitness, even in the initial population.
Compositionality: Superposition of fit schemata does not
guarantee larger schemata that are more fit and these are less
likely to survive.

Adapted from John J. Grefenstette. Deception Considered Harmful. 1992

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Theory of Genetic Algorithms
Course: Natural Computing (week *5)

(II) GA Variants

J. Michael Herrmann
School of Informatics, University of Edinburgh
michael.herrmann@ed.ac.uk, +44 131 6 517177

Variants of GAs
Selection

Roulette wheel (see above)
Non-linear distortions of the fitness function (e.g. steeper for
better fitnesses)
Tournament selection (especially for relative fitnesses, e.g.
evolving a strategy for a game

select a pair of individual and keep two copies of the winner of
the tournament
keep one copy of the winner plus with probability pt a copy of
the winner and with probability 1− pt a copy of the looser

Elitism: best individuals are moved unchanged to the next
generation
’Pocket’ algorithms remember the current best
Insertion of a few new random individuals in each generation

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Variants of GAs
Crossover

1-point
2-point, . . . , n-point
Cut and splice (a different cutting point in each of the parents,
children of different length)
Half-uniform crossover scheme (exactly half of the
non-matching bits are swapped)
More than two parents
Respecting problem structure (and possibly schemata)
Elitist crossover
Islands: crossover mostly within groups (more generally:
topology or networks)

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Variants
Mutation

Point mutation: flip or random
Exchange two randomly chosen characters (perhaps coupled
mutations)
Inversion
Respecting problem structure (and possibly schemata)
Fitness-dependent (e.g. mutation rate zero for current best
and maximal for worst)
Adaptive mutation rates

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Tournament selection vs. Roulette Wheel selection

Roulette Wheel selection (see above)
May be used on (raw) fitness values or rank (here: rank)
Chance of survival in a single run (for rank i):
p = (2i)/(n2 + n) (at least one from n runs P = 1− (1− p)n
for the first variant)
Best (rank n): p = 2/(n + 1), worst (rank 1): p = 2/(n2 + n)
Roulette wheel with elitism is fairly similar to tournament

Tournament selection (n winners from n tournaments)
Chance of survival depends on rank: P = (i − 1)/(n− 1) (rank
is used for analysis and does not need to be known for the
algorithm)
selection for tournament may also depend on rank
best (rank n) individual beats any other: P = 1
worst (rank 1) P = 0
Outcome of a tournament may be stochastic (add elitism)
Main advantage: Can be used if fitness function cannot be
calculated explicitly, e.g. in the evolution of chess players
Better parallelisable

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Making it better

Start the GA from good initial position (seeding). If you know
roughly where a solution might lie, use this information.
Use a representation close to the problem: Does not have to be
a fixed length linear binary string – avoid the Hamming Cliff1

Use operators that suit the representation chosen, e.g.
crossover only in specific positions
Run on parallel machines: Island model GA (Evolve isolated
subpopulations, allow to migrate at intervals)
Reduce mutation/crosssover towards the end of run

Reading: Mitchell Chapter 4

1) a transition from 011111 to 100000 is small for the phenotype, but may be hard to find for the GA

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Behaviour near the optimal solution

How to improve good individuals to perfect ones? (“exploitation”)

Problem: [De Jong] Say range of payoff values is [1,100]. Quickly
get population with fitness say in [99,100]. Selective differential
between best individual and rest, e.g. 99.988 and 100 is very small.
Why should GA prefer one over another?

Dynamically scale fitness as a function of generations or fitness
range (scale minimal fitness in the population to zero)
Use rank-proportional selection to main a constant selection
differential. Slows down initial convergence but increases
“exploitation” in the final stages.
Elitism. Keep best individual so far, or, selectively replace
worst members of population
Change parameters to shift balance from exploration at start
to exploitation towards the end

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

Conclusions on GA

In order to be successful GA algorithms need well structured
problems containing building blocks that are indicative of good
fitness and large populations (as quasi-models of the problem
structure).
GAs can be useful in setting the basic structure or design of a
task by choosing among components that are produced by
other approaches.
GAs are far from reaching the power of natural evolution.

Natural Computing 2024/25, week *5, Michael Herrmann, School of Informatics, University of Edinburgh

