
Course: Natural Computing
7. Hybrid Metaheuristics and

Hyperheuristics

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Overview

Memetics
Hybrid metaheuristics
Hyperheuristics

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



What is Metaheuristics?

Given:

a set S of potential solutions of a problem (search space)
a fitness function f : S 7→ R (bounded from above or below)

Find:

a sampling procedure G
(
{si}T−1

i=1

)
7→ sT such that f (sT ) is

likely to be near-optimal for T = Ttermination

Metaheuristics focuses on problems where words as ’likely’ or ’near-
optimal’ cannot be specified without unreasonable effort, i.e. for

small data due to peculiarity, availability, or non-stationarity
fuzzy problem formulation, unspecified data properties
multi-objective problems without clear weights or preferences

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Beyond Metaheuristics

What can be inferred from the set {si}T−1
i=1 of previous samples?

Search direction (based on a temporal coherence prior)
Step width (based on a spatial smoothness prior)
Prediction of new samples (temporal coherence and
smoothness)
Search dimensions (based on a compositionality prior)
Search space size and granularity (non-occurrence of certain
samples)

Some priors can be seen as implied by an anthropic bias.

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Higher-level ‘Memetic’ algorithms (Chen, Ong, & Lim, 2010)

Heuristics (single problem)
Metaheuristics (problems of a certain type)
Memetic Algorithms (1st level MA)
Hybrid algorithms (compositional MA)
Hyperheuristic (2nd level MA)
Co-evolution and self-generating (3rd level MA)

[Co-evolutionary free lunch?]

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Memetic algorithms (Moscato, 1989)

Metaphor based on social evolution → cultural algorithm
Includes both genetic and individual learning (similar to the
Baldwin effect and Lamarckian evolution)
Can be as simple as GA with ES for local search
In principle, the memetic component of the MH needs to be
developed in a social context (different from our representation
of Baldwin and Lamarck)
Can be considered a type of hyperheuristic algorithms, see
below.

see e.g. Neri & Cotta (2012) Memetic algorithms and memetic computing
optimization: A literature review.

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Memetic algorithms (Moscato, 1989)

Approaches

Lamarckian: Individual learning changes original representation
Baldwinian: Individual learning is part of the fitness evaluation,
and can support a genetic drift towards a typical result of
learning
Haeckelian: Social protection for some individuals
Fisherian: “The rate of increase in the mean fitness of any
organism at any time ascribable to natural selection acting
through changes in gene frequencies is exactly equal to its
genetic variance in fitness at that time.” (Fundamental
theorem of natural selection) [Edwards, 1994]
Kauffmanian: Embracing a culture of diversity
Wildtype vs. culturally adapted individuals (see islands, elites)
Competition for learning ability

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Memetic algorithms

More generally we can ask:

What type of local search?
Editing of the genome?
Choice of offspring for local search?
Frequency of local search?
How intensive is the locale search?

W. Jakob, Memetic Comp., 2010

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Hybrid metaheuristics

What is an (MHO) algorithm?

A sequence of instructions that has a justification of purpose
Algorithms can be variants or compositions of existing
algorithms

Approaches to hybrid metaheuristics include

Local search (as in memetic algorithms)
Incorporation of elements from existing algorithms (see above)
subpopulations or “seasons” where evolution follows different
algorithms
See also hybrid (biology) in Wikipedia

There is no clear distinction between hybrid metaheuristics and memetics, i.e.
either one can be said to include the other: Memetics is hybridisation specific-
ally by local search, whereas hybridisation can be seen as 1st level memetics.

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Outlook

As the “Banal” MH (Lect. 4s) suggests, it is not clear whether
we talk about a hybrid of existing algorithms or about a new
algorithm.
We need some classification of hybridisation approaches.
This will enable both a creative approach to design of new
algorithms and also automatic search within the space of
algorithms (⇒ hyperheuristics).

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Hybridisation (Talbi: Metaheuristics, 2009)

Combining metaheuristics with

Greedy heuristics
Local search
(complementary) metaheuristics
Exact methods from mathematical programming
Constraint programming approaches
Machine learning and data mining techniques

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Classification of hybrid metaheuristics

Many combinations are possible in a hybrid metaheuristics.
Talbi (2009) gives the following criteria

Level
high
low

Mode
relay
teamwork

Type
homogeneous
heterogeneous

Domain
global
partial

Function
generalist
specialist

Interaction
static
adaptive

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Combining metaheuristics with (complementary) metaheuristics

Level: A function of one MH is replaced by another MH (low)
or two complete algorithms are cooperating (high)
Mode: Two or more MHs are applied sequentially (relay) or is
there a direct cooperation (teamwork)
Type: Always the same metaheuristics is used (homogeneous)
or a choice among several MHs is made (heterogeneous)
Domain: All algorithms work on the same search space
(global) or are working on different aspects of the problem,
e.g. single objectives in MOO (partial)
Function: All algorithms work on the full problem (generalist)
or just on aspects such as diversification (specialist)
Interaction: The combination is fixed (static) or depends on
the runtime properties of the algorithm (adaptive)

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Structure of hybrid metaheuristics

Using local search can be seen as a low-level relay hybrid; e.g.
in GP, a continuous metaheuristic can be used to find
numerical constants
GAs can include teamwork with taboo search (used in
mutation to avoid already visited states) and a greedy heuristic
(for crossover to improve off-spring)
In heterogeneous hybrids a blackboard architecture can be
used for communication among the algorithms
Classical memetic algorithm can be considered as low-level
teamwork hybrids

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Examples: hybrid metaheuristics

In partial heterogeneous hybrids, various diversifying agents
receive solutions from regions explored by various intensifying
agents to increase diversity while they in turn send suggestions
to the intensifying agents
Adaptation can mean to use a second MH (e.g. random
search) when stagnation is detected
Island algorithms allow for heterogeneous approaches
Elitism invites different algorithms for the elite and the rest of
the population

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Examples: Hybrid metaheuristics

Combining metaheuristics: e.g. a trajectory-based method
(e.g. SA) with a population-based method (e.g. PSO)
Constraint optimisation problem: limit search for MHO, guide
search in AI
Large neighbourhood search: Adapt range of neighbourhood
Identify promising schemas in GA (and find specific
mutation/crossover operators)
Finding a decomposition of a dynamic programming problem

See C. Blum (2010) Hybrid Metaheuristics. Presentation at BIOMA, Ljubljana,
Slovenia

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Combining metaheuristics with AI and ML techniques

Gradient-based algorithms need good starting values that can
be provided by a diversifying MH
Local search can be performed by (local) exact techniques
Known strict bounds on the fitness can be used as
admissibility criteria
Use path finding algorithms to improve representation of a
Pareto front found by a population
Parameters of algorithms can be adapted by greedy search
methods
Mixed continuous integer optimisation

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



A unified view

P: Pool of solutions
(S)

IF : Input function

OF : Output function

IM: Improvement
method

SCM: Solution
combination method

S. Voss (2006) Hybridizing metaheuristics. 6th Europ. Conf. Evol. Comput. in Comb. Optim.
G. R. Raidl (2006) A unified view on hybrid metaheuristics. Int. Workshop Hybrid Metaheuristics.

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Hyperheuristics

The fundamental difference between metaheuristics and
hyperheuristics is that most implementations of metaheuristics
search within a search space of problem solutions, whereas
hyperheuristics always search within a search space of heuristics.

https://en.wikipedia.org/wiki/Hyper-heuristic

In contrast to a hybrid metaheuristics, hyperheuristics can find a
hybridisation automatically, but can adapt the algorithm also in a
more general sense.

What about GP?

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Hyperheuristics

There are several hundreds of metaheuristics which can be
modified by parameter settings, used mutually as “local” search
algorithms, and combined into hybrids: Why search among
solutions, if we can search among search algorithms?
Hyperheuristics can adapt, select or combine metaheuristics,
i.e. automatically designs metaheuristics on case-by-case basis

Use several MHO algorithms for a fraction of the fitness
evaluation budget, then select the best one
Use a high-level algorithm to decide about low-level algorithms
and their parameters narrowing the ensemble but continue to
use them in parallel
Use a high-level algorithm to generate or design low-level
heuristics

”A hyper-heuristic is an automated methodology for selecting
or generating heuristics to solve computational search
problems.” (Burke et al., 2019, Handbook of Metaheuristics. Ch. 14)
or: “Heuristics to choose heuristics” (Cowling et al., 2000; see also
Burke et al., 2013)

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Hyperheuristics

It does not escape from the NFL theorem. Bias depends on
formulation, e.g. the first data (selecting MHO) are
representative for later data (used by the MHO)
Potential problems:

Is the size of the new search space reasonable?
Is the original fitness functions good enough?
Is the metaheuristics diverse enough?

If you give a man a fish he is hungry again in an hour. If you teach
him to catch a fish you do him a good turn.

Anne Isabella Thackeray Ritchie

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Hyperheuristics

Another dimension is related to the use of fitness values

On-line learning HH: Request new fitnesses from the problem
costly, but flexible and potentially accurate

Offline learning HH: Learn from a set of training examples
requires control of generalisation, large data or a model
fails at non-stationarity

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



GA as a Hyperheuristic

E.g. consider PSO with many terms (repulsion, alignment,
velocity control etc.)

vi = g0ωvi + g1α1R1Expression1 + g2α2R2Expression2 + . . .

the gi terms are included here to switch on or off any of these
terms. Now, use GA to find optimal gi .
Construct various cross-over operators and mutations
operators, use another GA to choose which ones to use.
Write programs for many different MHO algorithms that
operate on a joint problem representation. Now use a GA to
select what combination of these algorithms to use.

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



GP as a Hyperheuristic

The suggestive idea to produce metaheuristic algorithms by GP has
been studied already for more than a decade, but so far there is not
too much progress.

See e.g.:

Keller and Poli (2007) Cost-benefit investigation of a genetic-programming
hyper-heuristic.

Stützle and Manuel López-Ibáñez (2019) Automated design of metaheuristic
algorithms. Handbook of Metaheuristics, Ch. 17.

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Case study

Jorge M Cruz-Duarte et al. (2021) Hyper-Heuristics to customise
metaheuristics for continuous optimisation. Swarm and Evolutionary
Computation 66, 100935.

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



What algorithms win the competitions?

Principles for comparisons:

First experimental principle: The problems used for assessing the
performance of an algorithm cannot be used in the development of
the algorithm itself.

Second experimental principle: The designer can take into account
any available domain-specific knowledge as well as make use of
pilot studies on similar problems.

Third experimental principle: When comparing several algorithms,
all the algorithms should make use of the available domain-specific
knowledge, and equal computational effort should be invested in all
the pilot studies. Similarly, in the test phase, all the algorithms
should be compared on an equal computing time basis.

Mauro Birattari, Mark Zlochinand Marco Dorigo: Toward a theory of practice in metaheuristic design: A
machine learning perspective. RAIRO-Inf. Theor. Appl. 40 (2006) 353-369.

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



What algorithms win the competitions?
IEEE Congress on Evolutionary Computation: Competition winners

Previously, single objective real-parameter optimization
competitions with evaluation criteria specified beforehand
Criteria change every year: Is there progress in the field?
Properties of successful algorithms in the years 2013-2015
(after this mostly multi-objective optimisation), e.g.

ES + restart when collapsed with increasing population size
GA + multiple parent crossover
ES with covariance matrix adaptation (CMA-ES)
GA with CMA as local search
GA, DE and CMA-ES in parallel for first half of time
Mean-Variance Mapping Optimisation (MVMO)
Success History-based Adaptive DE (SHADE) and variants

Result: If previous winners had taken part again, they may
have won. Although this is not a significant result, it suggests
that improvement is not very fast
Molina, Moreno-García, Herrera (2017) Analysis among winners of different IEEE

CEC competitions on Real-parameters Optimization: Is there always improvement?

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh



Conclusions

Employ a problem-oriented approach
what has been attempted previously, where are strengths and
weaknesses
in what case synergies can be expected

Keep in mind that
hybrid MHO algorithms as well as hyperheuristics are still
MHO algorithms
they may potentially provide a good adaptation to the problem
domain
hyperheuristics are computationally very demanding
hyperheuristics remain restricted to applications with low-cost
fitness functions (and competitions)

Avoid “Frankenstein methods”, i.e. overly intricate methods
with many different operators (Michalewicz and Fogel, 2004),
where the contribution of each component is hard to evaluate

Natural Computing 2024/25, week 7, Michael Herrmann, School of Informatics, University of Edinburgh


