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History of MHO (according to Wikipedia)

1952: H. Robbins and S. Monro work on stochastic optimisation methods.
1954: N. A. Barricelli: Evolution for general optimisation problems.
1963: L. A. Rastrigin proposes random search.
1965: J. Matyas proposes random optimisation.
1965: J. A. Nelder and R. Mead propose a simplex heuristic.
1965: Ingo Rechenberg discovers the first Evolution Strategies algorithm.
1966: Lawrence J. Fogel et al. propose evolutionary programming.
1970: W. K. Hastings proposes the Metropolis–Hastings algorithm.
1970: D. J. Cavicchio: adaptation of control parameters for an optimizer.
1970: W.B. Kernighan, S. Lin: Graph partitioning method (tabu search).
1975: John H. Holland proposes the genetic algorithm.
1977: Fred W. Glover proposes scatter search for integer programming.
1978: R. E. Mercer, J. R. Sampson: Metaplan for parameter tuning.
1980: Stephen F. Smith describes genetic programming.
1983: S. Kirkpatrick et al. propose simulated annealing.
1986: Fred W. Glover: Tabu search, first mention of metaheuristic.
1989: P. Moscato proposes memetic algorithms.
1990: G. Dueck, T. Scheuer: Threshold accepting (deterministic SA).
1995: D. H. Wolpert and W. G. Macready prove the no free lunch theorems.
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10 Successes of MHO∗

1 1990: Threshold accepting (Deterministic simulated annealing)
2 1995: XCS: Classifier fitness based on accuracy.
3 1996: John R. Koza’s electronic circuits
4 2000: The GOLEM project
5 2008: Digital Image Evolution of Artwork: Mona Lisa problem
6 2017: Differentiable GP
7 2018: Playing Atari games with GP
8 2020: AI Feynman
9 2022: Evolution through Large Models
10 2022: Intelligence as Capacity for Exploration

*Choice is largely subjective. Any additions?
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1. Threshold accepting

Simulated annealing without stochasticity1

Optimisation w.r.t. a set of nearest neighbours (for each city
in TSP)
Accept if quality Q of new state is not below Q-T for some T
Instead of varying temperature: Adapt T, e.g. decrease T
regularly (when stuck, increase T, or restart)
Algorithm is more data-driven and less chance-driven, but it
helps if best fitness is known
Proven to be better than SA (and similar algorithms)2

1G. Dueck, and T. Scheuer, 1990. Threshold accepting: A general purpose
optimization algorithm appearing superior to simulated annealing. Journal of
Computational Physics 90(1), 161-175.
2A. Franz, K. H. Hoffmann, P. Salamon, 2001. Best possible strategy for finding
ground states. Physical Review Letters 86, 5219.
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2. eXtended Classifier Systems (XCS)

Classifier systems: GA can help to select and shape classifiers
GA evolves schemata that are used to match inputs to the
system
A low-predicting classifier may nevertheless be the best one for
its environmental niche.
XCS fitness: Accuracy of prediction, instead of prediction itself.
Action selection updated by Q-learning
Rule-based machine learning. Combining GA and RL.

Wilson, S.W., 1995. Classifier fitness based on accuracy. Evolutionary Computation
3(2), 149-175.
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3. Early GP successes

Layout and sizing (numerical values) of electronic circuits:

crossover (woofer and tweeter) filter
low-pass filter
amplifier
asymmetric bandpass filter

Koza, J.R., Bennett, F.H., Andre, D. and Keane, M.A., 1996, May. Four
problems for which a computer program evolved by genetic programming is
competitive with human performance. In Proceedings of IEEE International
Conference on Evolutionary Computation (pp. 1-10). IEEE.
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4. “Genetically Organized Lifelike Electro Mechanics”

Virtual diversity of
morphology + control
in reality by 3D solid
printing

Pollack, J.B. and Lipson, H., 2000, July. The GOLEM project: Evolving hardware bodies and brains. In
Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware (pp. 37-42). IEEE.

⇒ Evolutionary robotics
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5. Digital Image Evolution of Artwork: Mona Lisa problem

Genetic algorithm chooses 50 semitransparent polygons
Published online by Roger Alsing (?) and Roger Johansson,
2008. https://rogerjohansson.blog/2008/12/07/genetic-
programming-evolution-of-mona-lisa/
Garbaruk, Julia, et al. (2022) Digital Image Evolution of Artwork
Without Human Evaluation Using the Example of the Evolving Mona Lisa
Problem. Vietnam Journal of Computer Science 9.02, 203-215.

Try it yourself at alteredqualia.com
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6. Differentiable genetic programming

dCGP: Cartesian GP with automatic differentiation

Restrict alphabet to differentiable functions (may include
approximations, e.g. for division)
Gradient based adaption of constants or parameters
Explicit derivatives to find analytic solutions of differential
equations

Izzo, D., Biscani, F. and Mereta, A. (2017) Differentiable genetic programming.
In European Conference on Genetic Programming, 35-51.
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7. Atari games by Genetic programming

V. Mnih et al. (2013) Playing Atari with deep reinforcement learning. arXiv:1312.5602.

D. G. Wilson et al.: Evolving simple programs for playing Atari games (GECCO’18)1

“Neural networks have garnered all the headlines, but a much more
powerful approach is waiting in the wings.”

MIT Technology Review (18/7/18) Cartesian genetic programming outperforms
deep-learning machines at Playing Atari Games.
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8. AI Feynman

Symbolic regression matches data to understand the target
domain
Neural network fitting with a suite of physics-inspired
techniques.
Target: 100 equations from the Feynman Lectures on Physics
(discovers all of them)
Equations contain what is understood about physics, so project
carries potential for transparency, explainability, interpretability
Fitness should also include: symmetries, separability,
compositionality, understandability

Udrescu, S.M. and Tegmark, M. (2020) AI Feynman: A physics-inspired
method for symbolic regression. Science Advances 6:16, p. eaay2631.

Natural Computing 2024/25, week 10 Michael Herrmann, School of Informatics, University of Edinburgh



9. Large models at OpenAI

Evolution through large models (ELM)

Represent diff mutations by a large language model (300M
parameters)
Diff mutations clearly outperform trivial GP operators
Fine-tuning by RL (walking machines on various terrains)

Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C. and Stanley, K.O., 2022.
Evolution through Large Models. arXiv preprint arXiv:2206.08896.
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10. Artificial General Intelligence

“Intelligence as Capacity for Exploration”

1 Improvability: An open world
is never fully explored

2 Learnability: Open-ended
learning includes structural
learning

3 Consistency across
environments implies
semantics (?)

Jiang, M., Rocktäschel, T. and Grefenstette, E., 2022. General Intelligence
Requires Rethinking Exploration. arXiv preprint arXiv:2211.07819.
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Recent problems in MHO

J. Del Sera et al. (2019) Bio-inspired computation: Where we stand and what’s next.
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More interesting topics

Explainability
Co-evolution
Ensembles (DE)
Pareto
Graphs
Machine learning
Set-oriented numerical optimisation [9]
More papers [6][2][3]
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Genetic programming for explainable AI

Fitness is often costly when evaluated in the real world
If the fitness is obtained by a computational model then

the model may not be good
optimisation may be possible in an easier way

However, if the model is good and complex and needs to be
simplified then we have an ideal case for applying a
metaheuristic approach, as follows

train a deep neural network (NN)
use the network to calculate the fitness of a GP that is
supposed to represent the function of the network in few
simple and understandable steps
If the GP is perfect it may replace the NN
If the GP does not represent the NN perfectly, it may still
provide the explanatory power that is missing in the black-box
approach with high representational power
It is not clear whether the GP may also indicate shortcomings
of the NN
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Co-evolution

Generic example: Hardware and software
Co-evolving parasites facilitate escape from local optima
(W. D. Hillis, Physica D, 1990)
Gene-culture co-evolution: Baldwin effect, memetic algorithms
Evolving co-operative agents (morphing, clustering,
composition, ...)
In MHO algorithms as an attempt to reach larger problem
sizes

Grouping of variable and decomposition of problems
Subproblem resource allocation
Co-operator selection based on mutual fitness
Fitness shaping and MOO
Representation learning

X. Ma et al. (2019) A Survey on Cooperative Co-Evolutionary Algorithms
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Ensemble of Differential Evolution Variants (EDEV)

Multi-population based framework (MPF) consisting of 3 DE
variants (sizes, e.g., 10 + 10 + 10)

JADE (adaptive differential evolution with optional external
archive)
CoDE (differential evolution with composite trial vector
generation strategies and control parameters)
EPSDE (differential evolution algorithm with ensemble of
parameters and mutation strategies)

And a fourth (larger) population is used to produce results
informed by the three indicator DEs (size, e.g., 70)
Guohua Wu, Xin Shen, Haifeng Li, Huangke Chen, Anping Lin, P. N. Suganthan

Ensemble of differential evolution variants (2018)
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Pareto or Non-Pareto

Problems with Pareto-style optimisation
slow convergence
poor representation of the front for many objectives

The Pareto subpopulation provides diversity, the non-Pareto
subpopulation exploitation
Applicable to single-objective problems
See also: Quality diversity [5] and multicriterial search [1]

Miqing Li, Shengxiang Yang, Xiaohui Liu (2016)
Pareto or Non-Pareto: Bi-Criterion Evolution in MOO
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Combinatorial Optimisation Algorithms over Graphs

Problem Statement: Given a graph optimisation problem G and a
distribution D of problem instances, can we learn a heuristics that
generalize to unseen instances from D?

Learning heuristic algorithms that exploit the structure of
recurring problems
Combination of reinforcement learning and graph embedding
Greedy policy incrementally constructs solutions
Framework can be applied to a range of optimisation
problems: Minimum Vertex Cover, Maximum Cut, and TSP
Good, but suboptimal results for up to 100 nodes

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, Le Song (2017)
Learning Combinatorial Optimization Algorithms over Graphs
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Machine learning and MHO

For machine learning (optimise existing approaches)
Hyperparameter selection
Structure learning (e.g. network layout)
Design of exploration strategies (including restarts)
Identification of counterexamples
Ensemble methods

From machine learning (map problems to algorithms)
Classification of problems in terms of algorithm applicability
Performance prediction for given instances (e.g. by SVM)
Learning of design properties of algorithms
Representation of information acquired about the problem
(e.g. model for fitness function, search direction, Pareto fronts)

See also review by Heda Song, Isaac Triguero, and Ender Özcan, 2019 [7]
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Recent problems in MHO: Neuroevolution

Sigmoid, ReLU or Gaussian? Why not try to evove an
activation function?

Yuen, B., Hoang, M.T., Dong, X. and Lu, T., 2021. Universal activation
function for machine learning. Scientific reports, 11(1), p.18757.

Natural Computing 2024/25, week 10 Michael Herrmann, School of Informatics, University of Edinburgh



Recent problems in MHO: Learning from biology

Miikkulainen, R. and Forrest, S., 2021. A biological perspective on evolutionary
computation. Nature Machine Intelligence, 3(1), pp.9-15.
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Recent problems in MHO: Theory

We show analytically that training a neural network by
conditioned stochastic mutation or neuroevolution of its
weights is equivalent, in the limit of small mutations, to
gradient descent on the loss function in the presence of
Gaussian white noise.
Averaged over independent realizations of the learning process,
neuroevolution is equivalent to gradient descent on the loss
function.

Whitelam, S., Selin, V., Park, S.W. and Tamblyn, I., 2021. Correspondence
between neuroevolution and gradient descent. Nature communications, 12(1),
p.6317.

Natural Computing 2024/25, week 10 Michael Herrmann, School of Informatics, University of Edinburgh



Recent problems in MHO: Cleaning up

Most MHO algorithms are variants of PSO, and some of these
variants are not needed.

Camacho-Villalón, C.L., Dorigo, M. and Stützle, T., 2023. Exposing the grey
wolf, moth-flame, whale, firefly, bat, and antlion algorithms: six misleading
optimization techniques inspired by bestial metaphors. International
Transactions in Operational Research, 30(6), pp.2945-2971.

Natural Computing 2024/25, week 10 Michael Herrmann, School of Informatics, University of Edinburgh



Machine learning and optimisation at various levels

Stork e.a.: A new taxonomy of global optimization algorithms. Natural Computing (2020) 1-24.[8]
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MHO for computing beyond Moore’s law

Problems with classical computing
Physical limits and high energy consumption
Specs (MFLOPS) are rather are not really indicative for success
technical approaches may not be efficient for human-centred AI

Bio-inspiration to be taken more seriously
Neural information processing at 0.1% energy consuption of
present technical methods
Not all “bio” is neural (nor swarm-like): Analogue computing,
meta-materials, morphological intelligence, active learning
(Brooks: “Elephants don’t play chess”)
Evolution towards relevant computations

Ferdinand Peper (2017) The end of Moore’s law: Opportunities for natural
computing? New Generation Computing 35:3, 253--269.
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10 (interdependent) Challenges for MHO
1 Efficient hyperheuristics (or at least parameter tuning)
2 Alignment of problems and algorithms (including

characterisation of landscapes and algorithms)
3 Criticality as a balance between exploration and exploitation [4]
4 Scalability (approaching hill-climbing for larger problems?)
5 Data-based search: Integration of neural networks (which can

be useful also in other respects)
6 Dynamic and stochastic problems: mat-heuristics,

learn-heuristics, sim-heuristics
7 Diversity and co-diversity: Diverse measures of diversity
8 Coevolution of algorithm (operators), population topology,

search-space partition (building blocks), and solutions
9 Mathematical methods: Convergence, complexity, verifiation,...
10 Change from performance to scientific understanding (Kenneth

Sörensen, Marc Sevaux, Fred Glover, 2017)
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Specific problems to explore

GP: Competition with neural network
PSO: Evolutionary design of heterogeneous swarms
IGA: Evolution of building blocks
Reinforcement learning and MHO
Robot swarms = Robots + MHO
GP in HCI/HRI
Check projects in Jan. 2024.
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Conclusion on MHO

MHO used to be a niche for developing simple algorithms
It’s not about metaphors, but about simplicity, experiments,
and finding usable solutions quickly
The many MHO algorithms are not very different from each
other, but they include prior knowledge in different ways
MHO algorithms gain their strength from teaming up with one
another and with methods from outside MHO
Perspectives are not too bad
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