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The formal definition  
of a (strategic) game

Definition: A game in normal or strategic form is a tuple 
 where


1.  is a set of players (sometimes called “agents”).


2. For each player , there is a set  of (pure) strategies. 


A vector  is called a  
strategy profile.


3. For each player , there is a payoff (or utility) function 
 which assigns a numerical value  to player  

for a given strategy profile .

(N, S1, S2, …, Sn, u1, u2, …, un)

N = {1,…, n}

i ∈ N Si

(s1, s2, …, sn) ∈ S1 × S2 × … × Sn = S

i ∈ N
ui : S → ℝ ui(s1, s2, …, sn) i

(s1, s2, …, sn)



Example 3:  
Cheating Partners

Take the deal Don’t take the deal

Take the deal

Don’t take the deal

You

Classmate

10

10

-100

20

20

-100

5

5

What would you do?



A First Game:  
Prisoner’s Dilemma

Two criminals have been arrested and are imprisoned in isolation 
(i.e., they cannot talk to each other!).


The police does not have enough evidence to convict them on the 
charges, but they do have enough to convict them on other charges 
(2 years). 


The offer each prisoner a bargain: Confess to the crime and you will 
get a reduced sentence (1 year). 


If the other person does not confess, they will be sentenced to 10 
years.


But if both prisoners confess, they each receive a sentence of 5 
years. 
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Solution Concept #1: 
Dominant Strategy Equilibrium

(Weakly) Dominant Strategy: A (pure) strategy  for player  
is a (weakly) dominant strategy, if it results in at least as high utility as 
any other strategy , regardless of the strategies of the others.

si ∈ Si i ∈ N

s′ i ∈ Si

Mathematically:  for all  and all 
.

ui(si, s−i) ≥ ui(s′ i, s−i) s′ i ∈ Si
s−i ∈ S1 × … × Si−1 × Si+1 × … × Sn = S−i

Strictly Dominant Strategy: The inequality above is strict.

(Weakly) Dominant Strategy Equilibrium (DSE): A strategy profile 
 such that each  is a (weakly) dominant strategy.s = (s1, …, sn) si

Classic game theory notation: s−i = (s1, …, si−1, si+1, …, sn)
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regardless of the strategy of Player 2

For Player 2, confessing is better 
regardless of the strategy of Player 1

Both players confessing is the  
logical outcome of this game.

Both players confessing is the only 
dominant strategy equilibrium.
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Solution Concept #1: 
Dominant Strategy Equilibrium

Question: Can a game have multiple weak dominant strategy 
equilibria?

Question: Can you propose a game that has more than one weak 
dominant strategy equilibrium?

Question: Can a game have multiple strict dominant strategy 
equilibria?

Question: Do all games have weak dominant strategy equilibria?
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A Game Without Dominant Strategy 
Equilibria: Choosing the TV show

If Player 2 chooses 
Peep Show, Player 1 
should choose Peep 
Show.

If Player 2 chooses 
FOTC, Player 1 
should choose FOTC.

There is no option that 
is best regardless of 
the other player - the 
best choice depends 
on the choice of the 
other player!
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1, 1 7, 10

FOTCPeep Show
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Solution Concept #1: 
Dominant Strategy Equilibrium

Proposition: Every pure strategy  in the support of a mixed (weakly) 
dominant strategy   is a (weakly) dominant pure strategy. 

si
xi

This means that if there are no (weakly) dominant pure strategies, 
then there are also no (weakly) dominant mixed strategies. 
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Not all games have DSE.

In fact, even simple games don’t have DSE.

Advantage of DSE: Obviously reasonable outcome - anything else is 
unreasonable.

Drawback of DSE: It is not universal - there are (many) games for 
which it does not exist.
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If Player 2 plays C, they always 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C is clearly better than R, no matter what Player 1 does. 
R is strictly dominated (by C).

This means that we can 
remove R.
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Any strictly dominated 
strategies for Player 1?
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If Player 2 plays L, they always 
get a utility of 1.
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strategies for Player 1? Consider M vs  

(1/2)*U + (1/2)*D 

u(M,L) = 1

1
2

u(U,L) +
1
2

u(D,L) = 1.5

u(M,C) = 1

1
2

u(U,C) +
1
2

u(D,C) = 2

M is strictly dominated by the  
mixture of U and L.

So we can remove it.
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We cannot find any more strictly dominated strategies.
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(Weakly) Dominant Strategy Equilibrium (DSE): A strategy profile 

 such that each  is a (weakly) dominant strategy.s = (s1, …, sn) si

Iterated Elimination of Dominated Strategies Equilibrium (IEDSE): Any 
(mixed) strategy profile that assigns zero probability to any strategy 
that would be removed through iterated elimination of strictly 
dominated strategies.

i.e., any strategy profile that does not contain any such strategies in 
its support. 

Intuition: DSE means players will only play obviously reasonable 
strategies, whilst IEDSE says that players will not play obviously 
unreasonable strategies. 

Clearly: If  is a DSE, it is also an IEDSE.x
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Solution Concept #2: 
Iterated Elimination of Dominated 

Strategies Equilibrium

Drawback of IEDSE: It allows for some (many) potentially 
unreasonable outcomes. 

Advantage of DSE: It is obviously universal (it always exists).

Conclusion: Not very convincing as a solution concept.

But we will return to it, because it can be useful as a tool for 
stronger solution concepts. 
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show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

For either  
(Peep Show, Peep Show) or  
(FOTC, FOTC),  
Player 1 does not want to 
deviate to watching the 
other show.

What about Player 2?

Player 2 does not want to 
deviate either!

So, assuming that the other 
player does not change 
strategy, no player wants to 
change.
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Pure Nash Equilibrium (PNE): A pure strategy profile  such that 
for any player , fixing the pure strategies  of the other players, 
player  cannot get higher utility from choosing a different pure strategy. 

(s1, …, sn)
i ∈ N s−i

i

Mathematically:  for all .ui(si, s−i) ≥ ui(s′ i, s−i) s′ i ∈ Si

Equivalently:  

 
In words:  is a pure strategy that maximises the utility of the player, 
given the fixed strategies  of the other players.

si ∈ arg max
̂si∈Si

ui( ̂si, s−i)

si
s−i

Terminology:  is a pure best response to . si s−i

Terminology: Player  does not have a profitable unilateral deviation.i



Back to Choosing the TV 
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Both  
(Peep Show, Peep Show) 
and  
(FOTC, FOTC),  
are PNE!
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Before we proceed… 
DSE vs PNE?

PNE:  for all .ui(si, s−i) ≥ ui(s′ i, s−i) s′ i ∈ Si

DSE:  for all  and all 
.

ui(si, s−i) ≥ ui(s′ i, s−i) s′ i ∈ Si
s−i ∈ S1 × … × Si−1 × Si+1 × … × Sn = S−i

What is the difference?

Which of the following statements is true? 
1. Every DSE is a PNE. 
2. Every PNE is a DSE. 
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RPS does not have any PNE!
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Solution Concept #3: 
Pure Nash Equilibrium

Due to Nash (1951).

Advantage of PNE: Much more 
reasonable outcome - “I won’t 
change unless the others change”, 
hence a stable outcome.

Is it universal? Do PNE always exist?

Drawback of PNE: It is not universal 
- there are games for which it does 
not exist.

But: There are important classes of 
games for which it does exist  
(stay tuned). 
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Pure Nash Equilibrium (MNE): A mixed strategy profile  such that 
for any player , fixing the mixed strategies  of the other players, 
player  cannot get higher utility from choosing a different mixed strategy. 


Mathematically:  for all .


Equivalently:  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(Mixed) Nash Equilibrium

Pure Nash Equilibrium (MNE): A mixed strategy profile  such that 
for any player , fixing the mixed strategies  of the other players, 
player  cannot get higher utility from choosing a different mixed strategy. 


Mathematically:  for all .


Equivalently:  

 
In words:  is a mixed strategy that maximises the utility of the player, 
given the fixed strategies  of the other players.


Terminology:  is a (mixed) best response to . 


Terminology: Player  does not have a profitable unilateral deviation.

(x1, …, xn)
i ∈ N x−i

i

ui(xi, x−i) ≥ ui(x′ i, x−i) x′ i ∈ Δ(Si)

xi ∈ arg max
̂xi∈Δ(Si)

ui( ̂xi, x−i)

xi
x−i

xi x−i

i

ui( ̂xi, x−i) = 𝔼(si,s−i)∼(xi,x−i)[ui(si, s−i)]
Recall:
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Rock-Paper-Scissors MNE
The symmetric strategy (R, P, S) = (1/3, 1/3, 1/3) for both players is a MNE.

How can we prove that though?

The definition says:  for all .ui(xi, x−i) ≥ ui(x′ i, x−i) x′ i ∈ Δ(Si)

So it seems that we have to compare against any other mixed strategy .x′ i

How many of those are there?

Proposition: A mixed strategy profile  is a mixed Nash 
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PhD dissertation). 
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Theorem (Nash 1951): Every (finite normal-form) game has at least 
one mixed Nash equilibrium.
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Find the “Bar Scene” (e.g., search for “Beautiful Mind Bar Scene” 
on YouTube).

This scene depicts the moment of revelation where John Nash 
supposedly conceived the notion of the Nash equilibrium.

1. First, think about how to model the situation that you see in the 
scene as a game.

2. Then, explain why the solution proposed by the fictional John 
Nash is actually not a Nash equilibrium.  


