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Solution Concept #3: 
Pure Nash Equilibrium

Pure Nash Equilibrium (PNE): A pure strategy profile  such that 
for any player , fixing the pure strategies  of the other players, 
player  cannot get higher utility from choosing a different pure strategy. 


Mathematically:  for all .


Equivalently:  

 
In words:  is a pure strategy that maximises the utility of the player, 
given the fixed strategies  of the other players.


Terminology:  is a pure best response to . 


Terminology: Player  does not have a profitable unilateral deviation.
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Solution Concept #3*: 
(Mixed) Nash Equilibrium

Pure Nash Equilibrium (MNE): A mixed strategy profile  such that 
for any player , fixing the mixed strategies  of the other players, 
player  cannot get higher utility from choosing a different mixed strategy. 


Mathematically:  for all .


Equivalently:  

 
In words:  is a mixed strategy that maximises the utility of the player, 
given the fixed strategies  of the other players.


Terminology:  is a (mixed) best response to . 


Terminology: Player  does not have a profitable unilateral deviation.
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player  cannot get higher utility from choosing a different mixed strategy. 


Mathematically:  for all .
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In words:  is a mixed strategy that maximises the utility of the player, 
given the fixed strategies  of the other players.


Terminology:  is a (mixed) best response to . 


Terminology: Player  does not have a profitable unilateral deviation.

(x1, …, xn)
i ∈ N x−i

i

ui(xi, x−i) ≥ ui(x′ i, x−i) x′ i ∈ Δ(Si)

xi ∈ arg max
̂xi∈Δ(Si)

ui( ̂xi, x−i)

xi
x−i

xi x−i

i

ui( ̂xi, x−i) = 𝔼(si,s−i)∼(xi,x−i)[ui(si, s−i)]
Recall:



Fundamental Proposition

Proposition 1: A mixed strategy profile  is a mixed Nash 
Equilibrium (MNE) if and only if, for every player  and every pure 
strategy , we have  
 

x = (xi, x−i)
i ∈ N

s′ i ∈ Si

ui(xi, x−i) ≥ ui(s′ i, x−i)



Rock-Paper-Scissors

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

PaperRock

Rock (R)

Paper (P)

Scissors (S)

ScissorsConsider the symmetric strategy 
(R, P, S) = (1/3, 1/3, 1/3) for  
both players. This is a MNE.

1/3 1/3 1/3

1/3

1/3

1/3

u1(x1, x2) =
1
3

⋅ 0 +
1
3

⋅ 1 +
1
3

⋅ (−1) = 0

u1(R, x2) = 0

u1(P, x2) = 0

u1(S, x2) = 0



Quick Recap: Efficient Algorithms

O(log n) O(n) O(n log n) O(n2) O(n↵)
O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm 

does not even 


read the
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input only
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of elements.
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performs many

nested loops.
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constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential
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Quick Recap: Efficient Algorithms

An algorithm is typically called efficient if it runs in 
polynomial time.

By that, we mean in time which a polynomial function of the 
size of the input parameters.

In the previous slide, that was abstractly denoted by “ ”, but 
there might be more / more complex parameters in the 
input.  

n

Before we talk about efficient algorithms, we need to be 
sure about what our input is.
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An efficient algorithm for 
verifying Nash equilibria

Informally:

Input: A game in normal form, a mixed strategy profile .x = (x1, …, xn)

Output: Yes if  is a MNE and No if it is not. x

Formally:

Input: The number  of players, the pure strategy sets , given explicitly, by 
listing all of their elements, the utility functions  given explicitly as a list of 
rational numbers, one for each pure strategy profile, e.g., , the mixed 
strategies , given as vectors  of rational numbers, where .

n Si
ui

ui(s1, …, sn)
xi (xi1, …, xim) m = |Si |

Output: Yes if  is a MNE and No if it is not. x
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An efficient algorithm for 
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For every player  doi ∈ N

Compute ui(xi, x−i)

For every  dosij ∈ Si

Compute ui(sij, x−i)

If  ui(xi, x−i) < ui(sij, x−i)

Return No

Return Yes

∑
s1∈S1

∑
s2∈S2

⋯ ∑
sn∈Sn
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Fundamental Proposition

Proposition 1: A mixed strategy profile  is a mixed Nash 
Equilibrium (MNE) if and only if, for every player  and every pure 
strategy , we have  
 

x = (xi, x−i)
i ∈ N

s′ i ∈ Si

ui(xi, x−i) ≥ ui(s′ i, x−i)



Another Fundamental 
Proposition

Proposition 2: A mixed strategy profile  is a mixed Nash 
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Proposition 2: A mixed strategy profile  is a mixed Nash Equilibrium (MNE) if and 
only if, for every player , and for every pure strategy  in the support of  (i.e., 

), we have .
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xi(si) > 0 ui(xi, x−i) = ui(si, x−i)
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Consider the alternative mixed strategy  such that  for all pure strategies 
 and  
 

x′ i x′ i(si) = xi(si)
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 results in higher utility, a contradiction!x′ i
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Claim: The utility  for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case. 

Then there are two pure strategies  such that  gives less utility than . si, sj si sj

Take the probability from  and move it to .si sj

We have created a better (i.e., with higher expected utility) mixed strategy .x′ i
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Both  
(Peep Show, Peep Show) 
and  
(FOTC, FOTC),  
are PNE!

What about mixed equilibria? 

Remember: By definition, 
PNE are MNE, so we already 
have found two!

We know here that if there 
are any others, they have to 
have full support.

We call those fully mixed. 
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Note: We use  and  here 
instead of  and  
because we only have two 
players. We will therefore 
use  to denote 
probabilities.

x y
x1 x2

xi, yi

Let  be the mixed 
strategy of Player 1 and 

 be the mixed 
strategy of Player 2.

(x1, x2)

(y1, y2)
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Combining (1) and (2) we get

y1 = 2/11, y2 = 9/11
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Another Fundamental 
Proposition

Proposition 2: A mixed strategy profile  is a mixed Nash 
Equilibrium (MNE) if and only if, for every player , and for every 
pure strategy  in the support of  (i.e., ), we have 

.


Question: Can you translate the idea we just used into an algorithm, 
which takes advantage of the proposition above?

x = (xi, x−i)
i ∈ N

si ∈ Si xi xi(si) > 0
ui(xi, x−i) = ui(si, x−i)
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Similarly we can compute the 
equilibrium strategy  of Player 1, based 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Can we solve this in  
polynomial time?



A bit more precisely
By using the notation of utilities, we want a solution to the following system of 
inequalities:

1.    (Proposition 2)∀i ∈ N, ∀sj ∈  supp(xi), ui(sj, x−i) = wi

2.   (MNE condition)∀i ∈ N, ∀sj ∉ supp(xi), ui(sj, x−i) ≤ wi

3.     (probabilities)∀i ∈ N, ∑
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xi(sj) = 1

4.  (in the support) ∀i ∈ N, ∀sj ∈  supp(xi) xi(sj) ≥ 0
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2.   (MNE condition)∀i ∈ N, ∀sj ∉ supp(xi), ui(sj, x−i) ≤ wi

3.     (probabilities)∀i ∈ N, ∑
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xi(sj) = 1

4.  (in the support) ∀i ∈ N, ∀sj ∈  supp(xi) xi(sj) ≥ 0

5.  (not in the support)∀i ∈ N, ∀sj ∉  supp(xi) xi(sj) = 0

This actually holds for any number of players, but the inequalities are linear only for two 
players. Why?
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Assume that we have magical access to the 
supports for all mixed strategies in the MNE.


In algorithms, we often call this oracle 
access.
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We can solve this in  
polynomial time!

What about this?
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Support Enumeration
1. Guess the support for the each mixed equilibrium strategy.

That means enumerate (i.e., try out all) the different possible 
supports.

2. Write and solve the system of linear equations.

3. If the system does not return “infeasible”, use the previous 
algorithm to verify that what you have computed is indeed a MNE.  

4. If it is, break and terminate. Otherwise continue. 

Question 1: How do we know that one of the supports will indeed give us a 
MNE?

Question 2: How fast is this algorithm? How many possible supports are there?
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2-player Zero-Sum Games

2 players with pure strategy sets  
 and S = {s1, …, sm1

} T = {t1, …, tm2
}

The utility functions are such that for any  and , we 
have 

si ∈ S ti ∈ T
u1(si, ti) = − u2(si, ti)

We can therefore drop the subscripts and write  as a 
shorthand for  and  as a shorthand for .

u(i, j)
u1(si, tj) −u(i, j) u1(si, tj)

Player 1 is trying to maximise the utility (maximiser) and Player 2 
is trying to minimise it (minimiser). 
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Scissors (S)

Scissors
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Quick Detour: Linear 
Algebra Refresher

For matrix operations, we will assume column-vector notation.

For example, for , we have:z = (z1, z2, …, zm) ∈ ℝm

       and        .z =

z1
z2
⋮
zm

z⊤ = [z1 z2 ⋯ zm]
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Consider a matrix . Then:A = (ai, j) ∈ ℝm×n

Ay =

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n

⋮ ⋮ ⋱ ⋮
am,1 am,2 … am,n

y1
y2
⋮
yn

=

a1,1y1+a1,2y2+⋯ + a1,nyn
a2,1y1+a2,2y2+⋯ + a2,nyn

⋮
am,1y1+am,2y2+⋯ + am,nyn

=

∑n
j=1 a1, jyj

∑n
j=1 a2, jyj

⋮
∑n

j=1 am, jyj

x⊤A = [x1 x2 ⋯ xm]

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n

⋮ ⋮ ⋱ ⋮
am,1 am,2 … am,n

= [∑m
i=1 xiai,1 ∑m

i=1 xiai,2 ⋯ ∑m
i=1 xiai,n]

  x⊤Ay =
m

∑
i=1

n

∑
j=1

xiai,jyj
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Let  be the payoff matrix of the game. A = (ai,j) ∈ ℝm×n

Let  and  be the strategies of the maximiser and the minimiser 
respectively. 

x y

The (expected) utility is    u(x, y) = x⊤Ay =
m1

∑
i=1

m2

∑
j=1

(xi ⋅ aij ⋅ yj)
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Solution Concept #4: 
Minimax (Optimal) Strategies 
Due to von Neumman (1928).

Choose the strategy that is the 
best possible against any choice 
of your opponent.

In other words, assuming that the 
opponent is trying to make sure 
you get as little utility as possible, 
choose the strategy that 
maximises your utility. 

Maximise your minimum possible 
utility (hence “minimax”). 

Why is this the rational thing to  
do in Zero-Sum games?
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vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Let  =  be  

the minus the payoff of the minimiser from the optimal strategy 
.

vy min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

y*

Observation:     .vx ≤ vy

Because: 
max

x∈Δ(X)
min

y∈Δ(Y)
x⊤Ay = min

y∈Δ(Y)
(x*)⊤Ay ≤ (x*)⊤Ay* ≤ max

x∈Δ(X)
x⊤Ay* = min

y∈Δ(Y)
max

x∈Δ(X)
x⊤Ay
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Let  =  be  

the payoff of the maximiser from the optimal strategy .

vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Let  =  be  

the minus the payoff of the minimiser from the optimal strategy .

vy min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

y*

Observation:     .vx ≤ vy

von Neumann’s Minimax Theorem (1928, 1944):     vx = vy
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von Neumann’s Theorem
     =   (value of the game)vx = vy v

The theorem can be interpreted as follows:

- For the maximiser, there is a mixed strategy, which, regardless of what 
the minimiser does, guarantees the maximiser a payoff of at least .v

- For the minimiser, there is a mixed strategy, which, regardless of what the 
maximiser does, guarantees the minimiser a “loss” or “cost” of at most . v

- If the maximiser played a strategy that could only achieve a smaller 
payoff, or the minimiser played a strategy that incurred a higher loss, they 
could switch to the minimax/maximin (optimal) strategies.

- So these strategies are the only reasonable/rational outcomes of the 
game. 
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Aren’t MNE reasonable outcomes of games? 

We in fact computed an MNE is RPS and it looks pretty 
reasonable!



Rock-Paper-Scissors

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

PaperRock

Rock (R)

Paper (P)

Scissors (S)

Scissors
Consider the symmetric strategy 

(R, P, S) = (1/3, 1/3, 1/3) for  
both players. These are 

optimal strategies.

1/3 1/3 1/3

1/3

1/3

1/3

u1(x1, x2) =
1
3

⋅ 0 +
1
3

⋅ 1 +
1
3

⋅ (−1) = 0

u1(R, x2) = 0

u1(P, x2) = 0

u1(S, x2) = 0
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But wait a second…

Aren’t MNE reasonable outcomes of games? 

We in fact computed an MNE is RPS and it looks pretty 
reasonable!

Theorem: Let  be a pair of mixed strategies of a 2-player 
Zero-Sum game. Then  and  are both optimal strategies if 
and only if  is a MNE.

(x*,y*)
x* y*

(x*,y*)
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Assume that  is a pair of optimal strategies. (x*,y*)

By the minimax theorem, we know that  
 
max

x∈Δ(X)
x⊤Ay* = min

y∈Δ(Y)
(x*)⊤Ay = (x*)⊤Ay*

Consider a deviation of the maximiser to . From the above, it 
has to hold that , i.e., the utility of the 
maximiser cannot increase. 

x′ 

(x′ )⊤Ay* ≤ (x*)⊤Ay*

The argument for the minimiser is similar. 
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x∈Δ(X)
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Proof of the Theorem
Assume that  is a MNE.(x*,y*)

By definition, that means that for the maximiser, we have 
 

 (1)(x*)⊤Ay* = max
x∈Δ(X)

x⊤Ay* ≥ min
y∈Δ(Y)

max
x∈Δ(x)

x⊤Ay

and for the minimiser we have 

 (2)(x*)⊤Ay* = min
y∈Δ(Y)

(x*)⊤Ay ≤ max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

By the minimax theorem, we know that the RHS of both (1) and (2) 
are equal. This is only possible if the two inequalities are satisfied 
with equality  both strategies are optimal. ⇒
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In 2-player Zero-Sum Games 
Minimax Strategies = MNE

Theorem: Let  be a pair of mixed strategies of a 2-player 
Zero-Sum game. Then  and  are both optimal strategies if 
and only if  is a MNE.

(x*,y*)
x* y*

(x*,y*)

This provides a proof of the minimax theorem. How?
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How do we solve those systems of linear equations to run the 
support enumeration algorithms for computing MNE?

How do we prove von Neumann’s minimax theorem? 

- Yes, it follows from Nash, but we haven’t proven that either.

- Actually, it was proven before Nash’s Theorem, and has an 
easier proof.

How can we compute optimal strategies in 2-player Zero-Sum 
games? Algorithms?

Can we have efficient algorithms for computing MNE in (general 
sum) games, even for 2 players?
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