
Algorithmic Game Theory
and Applications

Nash Equilibrium and Zero-Sum Games

Solution Concept #3:
Pure Nash Equilibrium

Pure Nash Equilibrium (PNE): A pure strategy profile such that
for any player , fixing the pure strategies of the other players,
player cannot get higher utility from choosing a different pure strategy.

Mathematically: for all .

Equivalently:  

 
In words: is a pure strategy that maximises the utility of the player,
given the fixed strategies of the other players.

Terminology: is a pure best response to .

Terminology: Player does not have a profitable unilateral deviation.

(s1, …, sn)
i ∈ N s−i

i

ui(si, s−i) ≥ ui(s′ i, s−i) s′ i ∈ Si

si ∈ arg max
̂si∈Si

ui(̂si, s−i)

si
s−i

si s−i

i

Solution Concept #3*:
(Mixed) Nash Equilibrium

Pure Nash Equilibrium (MNE): A mixed strategy profile such that
for any player , fixing the mixed strategies of the other players,
player cannot get higher utility from choosing a different mixed strategy.

Mathematically: for all .

Equivalently:  

 
In words: is a mixed strategy that maximises the utility of the player,
given the fixed strategies of the other players.

Terminology: is a (mixed) best response to .

Terminology: Player does not have a profitable unilateral deviation.

(x1, …, xn)
i ∈ N x−i

i

ui(xi, x−i) ≥ ui(x′ i, x−i) x′ i ∈ Δ(Si)

xi ∈ arg max
̂xi∈Δ(Si)

ui(̂xi, x−i)

xi
x−i

xi x−i

i

Solution Concept #3*:
(Mixed) Nash Equilibrium

Pure Nash Equilibrium (MNE): A mixed strategy profile such that
for any player , fixing the mixed strategies of the other players,
player cannot get higher utility from choosing a different mixed strategy.

Mathematically: for all .

Equivalently:  

 
In words: is a mixed strategy that maximises the utility of the player,
given the fixed strategies of the other players.

Terminology: is a (mixed) best response to .

Terminology: Player does not have a profitable unilateral deviation.

(x1, …, xn)
i ∈ N x−i

i

ui(xi, x−i) ≥ ui(x′ i, x−i) x′ i ∈ Δ(Si)

xi ∈ arg max
̂xi∈Δ(Si)

ui(̂xi, x−i)

xi
x−i

xi x−i

i

ui(̂xi, x−i) = 𝔼(si,s−i)∼(xi,x−i)[ui(si, s−i)]
Recall:

Fundamental Proposition

Proposition 1: A mixed strategy profile is a mixed Nash
Equilibrium (MNE) if and only if, for every player and every pure
strategy , we have  
 

x = (xi, x−i)
i ∈ N

s′ i ∈ Si

ui(xi, x−i) ≥ ui(s′ i, x−i)

Rock-Paper-Scissors

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

PaperRock

Rock (R)

Paper (P)

Scissors (S)

ScissorsConsider the symmetric strategy 
(R, P, S) = (1/3, 1/3, 1/3) for  
both players. This is a MNE.

1/3 1/3 1/3

1/3

1/3

1/3

u1(x1, x2) =
1
3

⋅ 0 +
1
3

⋅ 1 +
1
3

⋅ (−1) = 0

u1(R, x2) = 0

u1(P, x2) = 0

u1(S, x2) = 0

Quick Recap: Efficient Algorithms

O(log n) O(n) O(n log n) O(n2) O(n↵)
O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm

does not even

read the

whole input.

The algorithm

accesses the

input only

a constant

number of

times.

The algorithm

splits the inputs

into two pieces

of similar size,

solves each part

and merges the

solutions.

The algorithm

considers pairs

of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential

Polynomial time

Quick Recap: Efficient Algorithms

O(log n) O(n) O(n log n) O(n2) O(n↵)
O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm

does not even

read the

whole input.

The algorithm

accesses the

input only

a constant

number of

times.

The algorithm

splits the inputs

into two pieces

of similar size,

solves each part

and merges the

solutions.

The algorithm

considers pairs

of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential

Quick Recap: Efficient Algorithms

Quick Recap: Efficient Algorithms

An algorithm is typically called efficient if it runs in
polynomial time.

Quick Recap: Efficient Algorithms

An algorithm is typically called efficient if it runs in
polynomial time.

By that, we mean in time which a polynomial function of the
size of the input parameters.

Quick Recap: Efficient Algorithms

An algorithm is typically called efficient if it runs in
polynomial time.

By that, we mean in time which a polynomial function of the
size of the input parameters.

In the previous slide, that was abstractly denoted by “ ”, but
there might be more / more complex parameters in the
input.

n

Quick Recap: Efficient Algorithms

An algorithm is typically called efficient if it runs in
polynomial time.

By that, we mean in time which a polynomial function of the
size of the input parameters.

In the previous slide, that was abstractly denoted by “ ”, but
there might be more / more complex parameters in the
input.

n

Before we talk about efficient algorithms, we need to be
sure about what our input is.

An efficient algorithm for
verifying Nash equilibria

An efficient algorithm for
verifying Nash equilibria

Informally:

Input: A game in normal form, a mixed strategy profile .x = (x1, …, xn)

Output: Yes if is a MNE and No if it is not. x

An efficient algorithm for
verifying Nash equilibria

Informally:

Input: A game in normal form, a mixed strategy profile .x = (x1, …, xn)

Output: Yes if is a MNE and No if it is not. x

Formally:

Input: The number of players, the pure strategy sets , given explicitly, by
listing all of their elements, the utility functions given explicitly as a list of
rational numbers, one for each pure strategy profile, e.g., , the mixed
strategies , given as vectors of rational numbers, where .

n Si
ui

ui(s1, …, sn)
xi (xi1, …, xim) m = |Si |

Output: Yes if is a MNE and No if it is not. x

An efficient algorithm for
verifying Nash equilibria

For every player doi ∈ N

An efficient algorithm for
verifying Nash equilibria

For every player doi ∈ N

Compute ui(xi, x−i)

An efficient algorithm for
verifying Nash equilibria

For every player doi ∈ N

Compute ui(xi, x−i)

∑
s1∈S1

∑
s2∈S2

⋯ ∑
sn∈Sn

x1(s1) ⋅ x2(s2) ⋅ … ⋅ xn(sn) ⋅ ui(s1, …, sn)

An efficient algorithm for
verifying Nash equilibria

For every player doi ∈ N

Compute ui(xi, x−i)

For every dosij ∈ Si

∑
s1∈S1

∑
s2∈S2

⋯ ∑
sn∈Sn

x1(s1) ⋅ x2(s2) ⋅ … ⋅ xn(sn) ⋅ ui(s1, …, sn)

An efficient algorithm for
verifying Nash equilibria

For every player doi ∈ N

Compute ui(xi, x−i)

For every dosij ∈ Si

Compute ui(sij, x−i) ∑
s1∈S1

∑
s2∈S2

⋯ ∑
sn∈Sn

x1(s1) ⋅ x2(s2) ⋅ … ⋅ xn(sn) ⋅ ui(s1, …, sn)

An efficient algorithm for
verifying Nash equilibria

For every player doi ∈ N

Compute ui(xi, x−i)

For every dosij ∈ Si

Compute ui(sij, x−i)

If ui(xi, x−i) < ui(sij, x−i)

∑
s1∈S1

∑
s2∈S2

⋯ ∑
sn∈Sn

x1(s1) ⋅ x2(s2) ⋅ … ⋅ xn(sn) ⋅ ui(s1, …, sn)

An efficient algorithm for
verifying Nash equilibria

For every player doi ∈ N

Compute ui(xi, x−i)

For every dosij ∈ Si

Compute ui(sij, x−i)

If ui(xi, x−i) < ui(sij, x−i)

Return No

∑
s1∈S1

∑
s2∈S2

⋯ ∑
sn∈Sn

x1(s1) ⋅ x2(s2) ⋅ … ⋅ xn(sn) ⋅ ui(s1, …, sn)

An efficient algorithm for
verifying Nash equilibria

For every player doi ∈ N

Compute ui(xi, x−i)

For every dosij ∈ Si

Compute ui(sij, x−i)

If ui(xi, x−i) < ui(sij, x−i)

Return No

Return Yes

∑
s1∈S1

∑
s2∈S2

⋯ ∑
sn∈Sn

x1(s1) ⋅ x2(s2) ⋅ … ⋅ xn(sn) ⋅ ui(s1, …, sn)

Fundamental Proposition

Proposition 1: A mixed strategy profile is a mixed Nash
Equilibrium (MNE) if and only if, for every player and every pure
strategy , we have  
 

x = (xi, x−i)
i ∈ N

s′ i ∈ Si

ui(xi, x−i) ≥ ui(s′ i, x−i)

Another Fundamental
Proposition

Proposition 2: A mixed strategy profile is a mixed Nash
Equilibrium (MNE) if and only if, for every player , and for every
pure strategy in the support of (i.e.,), we have

.

x = (xi, x−i)
i ∈ N

si ∈ Si xi xi(si) > 0
ui(xi, x−i) = ui(si, x−i)

A quick proof of ⇐
Proposition 2: A mixed strategy profile is a mixed Nash Equilibrium (MNE) if and
only if, for every player , and for every pure strategy in the support of (i.e.,

), we have .

x = (xi, x−i)
i ∈ N si ∈ Si xi

xi(si) > 0 ui(xi, x−i) = ui(si, x−i)

A quick proof of ⇐
Proposition 2: A mixed strategy profile is a mixed Nash Equilibrium (MNE) if and
only if, for every player , and for every pure strategy in the support of (i.e.,

), we have .

x = (xi, x−i)
i ∈ N si ∈ Si xi

xi(si) > 0 ui(xi, x−i) = ui(si, x−i)

Let be a MNE. This immediately implies for all .x = (xi, x−i) ui(si, x−i) ≤ ui(xi, x−i) si ∈ Si

A quick proof of ⇐
Proposition 2: A mixed strategy profile is a mixed Nash Equilibrium (MNE) if and
only if, for every player , and for every pure strategy in the support of (i.e.,

), we have .

x = (xi, x−i)
i ∈ N si ∈ Si xi

xi(si) > 0 ui(xi, x−i) = ui(si, x−i)

Let be a MNE. This immediately implies for all .x = (xi, x−i) ui(si, x−i) ≤ ui(xi, x−i) si ∈ Si

Assume by contradiction that for some strategy , we had s′ i ∈ supp(xi) ui(si, x−i) < ui(xi, x−i)

A quick proof of ⇐
Proposition 2: A mixed strategy profile is a mixed Nash Equilibrium (MNE) if and
only if, for every player , and for every pure strategy in the support of (i.e.,

), we have .

x = (xi, x−i)
i ∈ N si ∈ Si xi

xi(si) > 0 ui(xi, x−i) = ui(si, x−i)

Let be a MNE. This immediately implies for all .x = (xi, x−i) ui(si, x−i) ≤ ui(xi, x−i) si ∈ Si

Assume by contradiction that for some strategy , we had s′ i ∈ supp(xi) ui(si, x−i) < ui(xi, x−i)

Let . By definition this is s*i ∈ arg max
si∈ supp(xi)

ui(si, x−i) ≥ ui(xi, x−i)

A quick proof of ⇐
Proposition 2: A mixed strategy profile is a mixed Nash Equilibrium (MNE) if and
only if, for every player , and for every pure strategy in the support of (i.e.,

), we have .

x = (xi, x−i)
i ∈ N si ∈ Si xi

xi(si) > 0 ui(xi, x−i) = ui(si, x−i)

Let be a MNE. This immediately implies for all .x = (xi, x−i) ui(si, x−i) ≤ ui(xi, x−i) si ∈ Si

Assume by contradiction that for some strategy , we had s′ i ∈ supp(xi) ui(si, x−i) < ui(xi, x−i)

Let . By definition this is s*i ∈ arg max
si∈ supp(xi)

ui(si, x−i) ≥ ui(xi, x−i)

Consider the alternative mixed strategy such that for all pure strategies
 and  
 

x′ i x′ i(si) = xi(si)
si ≠ s′ i, s*i
xi(s′ i) = 0
x′ i(s*i) = xi(s*i) + xi(s′ i)

A quick proof of ⇐
Proposition 2: A mixed strategy profile is a mixed Nash Equilibrium (MNE) if and
only if, for every player , and for every pure strategy in the support of (i.e.,

), we have .

x = (xi, x−i)
i ∈ N si ∈ Si xi

xi(si) > 0 ui(xi, x−i) = ui(si, x−i)

Let be a MNE. This immediately implies for all .x = (xi, x−i) ui(si, x−i) ≤ ui(xi, x−i) si ∈ Si

Assume by contradiction that for some strategy , we had s′ i ∈ supp(xi) ui(si, x−i) < ui(xi, x−i)

Let . By definition this is s*i ∈ arg max
si∈ supp(xi)

ui(si, x−i) ≥ ui(xi, x−i)

Consider the alternative mixed strategy such that for all pure strategies
 and  
 

x′ i x′ i(si) = xi(si)
si ≠ s′ i, s*i
xi(s′ i) = 0
x′ i(s*i) = xi(s*i) + xi(s′ i)

 results in higher utility, a contradiction!x′ i

Via example:
1
3

1
4

0
1
6

1
4

0

s1 s2 s3 s4 s5 s6

xi

Via example:
1
3

1
4

0
1
6

1
4

0

s1 s2 s3 s4 s5 s6

xi

Via example:
1
3

1
4

0
1
6

1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)

Via example:
1
3

1
4

0
1
6

1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case.

Via example:
1
3

1
4

0
1
6

1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case.

Then there are two pure strategies such that gives less utility than . si, sj si sj

Via example:
1
3

1
4

0
1
6

1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case.

Then there are two pure strategies such that gives less utility than . si, sj si sj

Via example:
1
3

1
4

0
1
6

1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case.

Then there are two pure strategies such that gives less utility than . si, sj si sj

Via example:
1
3

1
4

0
1
6

1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case.

Then there are two pure strategies such that gives less utility than . si, sj si sj

Take the probability from and move it to .si sj

Via example:
1
4

0
1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case.

Then there are two pure strategies such that gives less utility than . si, sj si sj

Take the probability from and move it to .si sj

0 1
2

Via example:
1
4

0
1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case.

Then there are two pure strategies such that gives less utility than . si, sj si sj

Take the probability from and move it to .si sj

0 1
2

Via example:
1
4

0
1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case.

Then there are two pure strategies such that gives less utility than . si, sj si sj

Take the probability from and move it to .si sj

0 1
2

Via example:
1
4

0
1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case.

Then there are two pure strategies such that gives less utility than . si, sj si sj

Take the probability from and move it to .si sj

0 1
2

Via example:
1
4

0
1
4

0

s1 s2 s3 s4 s5 s6

xi

Claim: The utility for every strategy in the support is the same. ui(si, x−i)
By contradiction: Assume that this is not the case.

Then there are two pure strategies such that gives less utility than . si, sj si sj

Take the probability from and move it to .si sj

We have created a better (i.e., with higher expected utility) mixed strategy .x′ i

0 1
2

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Both  
(Peep Show, Peep Show)
and  
(FOTC, FOTC),  
are PNE!

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Both  
(Peep Show, Peep Show)
and  
(FOTC, FOTC),  
are PNE!

What about mixed equilibria?

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Both  
(Peep Show, Peep Show)
and  
(FOTC, FOTC),  
are PNE!

What about mixed equilibria?

Remember: By definition,
PNE are MNE, so we already
have found two!

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Both  
(Peep Show, Peep Show)
and  
(FOTC, FOTC),  
are PNE!

What about mixed equilibria?

Remember: By definition,
PNE are MNE, so we already
have found two!

We know here that if there
are any others, they have to
have full support.

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Both  
(Peep Show, Peep Show)
and  
(FOTC, FOTC),  
are PNE!

What about mixed equilibria?

Remember: By definition,
PNE are MNE, so we already
have found two!

We know here that if there
are any others, they have to
have full support.

We call those fully mixed.

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Assume that we have a
mixed equilibrium (x, y)

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Assume that we have a
mixed equilibrium (x, y)

Note: We use and here
instead of and
because we only have two
players. We will therefore
use to denote
probabilities.

x y
x1 x2

xi, yi

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Assume that we have a
mixed equilibrium (x, y)

Note: We use and here
instead of and
because we only have two
players. We will therefore
use to denote
probabilities.

x y
x1 x2

xi, yi

Let be the mixed
strategy of Player 1 and

 be the mixed
strategy of Player 2.

(x1, x2)

(y1, y2)

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

By Proposition 2, we know that

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

By Proposition 2, we know that

u1(x1, y) = u1(x2, y)

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

By Proposition 2, we know that

u1(x1, y) = u1(x2, y)

In other words,

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

By Proposition 2, we know that

u1(x1, y) = u1(x2, y)

In other words,

10y1 + 5y2 = y1 + 7y2

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

By Proposition 2, we know that

u1(x1, y) = u1(x2, y)

In other words,

10y1 + 5y2 = y1 + 7y2

 (1)⇒ 9y1 − 2y2 = 0

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

By Proposition 2, we know that

u1(x1, y) = u1(x2, y)

In other words,

10y1 + 5y2 = y1 + 7y2

 (1)⇒ 9y1 − 2y2 = 0

We also have:

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

By Proposition 2, we know that

u1(x1, y) = u1(x2, y)

In other words,

10y1 + 5y2 = y1 + 7y2

 (1)⇒ 9y1 − 2y2 = 0

We also have:

 (2)y1 + y2 = 1

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

By Proposition 2, we know that

u1(x1, y) = u1(x2, y)

In other words,

10y1 + 5y2 = y1 + 7y2

 (1)⇒ 9y1 − 2y2 = 0

We also have:

 (2)y1 + y2 = 1

Combining (1) and (2) we get

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

By Proposition 2, we know that

u1(x1, y) = u1(x2, y)

In other words,

10y1 + 5y2 = y1 + 7y2

 (1)⇒ 9y1 − 2y2 = 0

We also have:

 (2)y1 + y2 = 1

Combining (1) and (2) we get

y1 = 2/11, y2 = 9/11

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Similarly we can calculate

Back to Choosing the TV
show

10, 7 5, 5

1, 1 7, 10

FOTCPeep Show

Peep  
Show

FOTC

Similarly we can calculate

x1 = 9/11, x2 = 2/11

Another Fundamental
Proposition

Proposition 2: A mixed strategy profile is a mixed Nash
Equilibrium (MNE) if and only if, for every player , and for every
pure strategy in the support of (i.e.,), we have

.

Question: Can you translate the idea we just used into an algorithm,
which takes advantage of the proposition above?

x = (xi, x−i)
i ∈ N

si ∈ Si xi xi(si) > 0
ui(xi, x−i) = ui(si, x−i)

An algorithm for computing Nash
equilibria in 2-player games

Assume that we have magical access to the
supports for all mixed strategies in the MNE.

In algorithms, we often call this oracle
access.

We can then write a set of inequalities:

 =

 for all

∑
yj∈ supp(y)

y(tj) ⋅ ui(si, tj)

∑
yj∈ supp(y)

y(tj) ⋅ ui(s′ i, tj) si, si ∈ supp(x)

∑
yj∈ supp(y)

y(tj) = 1

t1 tm
s1

sk

Pr [chooses] y(tj) = y tj

ui(si, tj)

An algorithm for computing Nash
equilibria in 2-player games

Assume that we have magical access to the
supports for all mixed strategies in the MNE.

In algorithms, we often call this oracle
access.

We can then write a set of inequalities:

 =

 for all

∑
yj∈ supp(y)

y(tj) ⋅ ui(si, tj)

∑
yj∈ supp(y)

y(tj) ⋅ ui(s′ i, tj) si, si ∈ supp(x)

∑
yj∈ supp(y)

y(tj) = 1

t1 tm
s1

sk

Pr [chooses] y(tj) = y tj
This computes the equilibrium strategy 

of Player 2, based on Player 1

ui(si, tj)

An algorithm for computing Nash
equilibria in 2-player games

Assume that we have magical access to the
supports for all mixed strategies in the MNE.

In algorithms, we often call this oracle
access.

We can then write a set of inequalities:

 =

 for all

∑
yj∈ supp(y)

y(tj) ⋅ ui(si, tj)

∑
yj∈ supp(y)

y(tj) ⋅ ui(s′ i, tj) si, si ∈ supp(x)

∑
yj∈ supp(y)

y(tj) = 1

t1 tm
s1

sk

Pr [chooses] y(tj) = y tj
This computes the equilibrium strategy 

of Player 2, based on Player 1

Similarly we can compute the 
equilibrium strategy of Player 1, based 

on Player 2.
x

ui(si, tj)

An algorithm for computing Nash
equilibria in 2-player games

Assume that we have magical access to the
supports for all mixed strategies in the MNE.

In algorithms, we often call this oracle
access.

We can then write a set of inequalities:

 =

 for all

∑
yj∈ supp(y)

y(tj) ⋅ ui(si, tj)

∑
yj∈ supp(y)

y(tj) ⋅ ui(s′ i, tj) si, si ∈ supp(x)

∑
yj∈ supp(y)

y(tj) = 1

t1 tm
s1

sk

Pr [chooses] y(tj) = y tj
This computes the equilibrium strategy 

of Player 2, based on Player 1

Similarly we can compute the 
equilibrium strategy of Player 1, based 

on Player 2.
x

ui(si, tj)

Can we solve this in  
polynomial time?

A bit more precisely
By using the notation of utilities, we want a solution to the following system of
inequalities:

1. (Proposition 2)∀i ∈ N, ∀sj ∈ supp(xi), ui(sj, x−i) = wi

2. (MNE condition)∀i ∈ N, ∀sj ∉ supp(xi), ui(sj, x−i) ≤ wi

3. (probabilities)∀i ∈ N, ∑
sj∈Sj

xi(sj) = 1

4. (in the support) ∀i ∈ N, ∀sj ∈ supp(xi) xi(sj) ≥ 0

5. (not in the support)∀i ∈ N, ∀sj ∉ supp(xi) xi(sj) = 0

A bit more precisely
By using the notation of utilities, we want a solution to the following system of
inequalities:

1. (Proposition 2)∀i ∈ N, ∀sj ∈ supp(xi), ui(sj, x−i) = wi

2. (MNE condition)∀i ∈ N, ∀sj ∉ supp(xi), ui(sj, x−i) ≤ wi

3. (probabilities)∀i ∈ N, ∑
sj∈Sj

xi(sj) = 1

4. (in the support) ∀i ∈ N, ∀sj ∈ supp(xi) xi(sj) ≥ 0

5. (not in the support)∀i ∈ N, ∀sj ∉ supp(xi) xi(sj) = 0

This actually holds for any number of players, but the inequalities are linear only for two
players. Why?

An algorithm for computing Nash
equilibria in 2-player games

Assume that we have magical access to the
supports for all mixed strategies in the MNE.

In algorithms, we often call this oracle
access.

We can then write a set of inequalities:

 =

 for all

∑
yj∈ supp(y)

y(tj) ⋅ ui(si, tj)

∑
yj∈ supp(y)

y(tj) ⋅ ui(s′ i, tj) si, si ∈ supp(x)

∑
yj∈ supp(y)

y(tj) = 1

t1 tm
s1

sk

Pr [chooses] y(tj) = y tj

ui(si, tj)

We can solve this in  
polynomial time!

An algorithm for computing Nash
equilibria in 2-player games

Assume that we have magical access to the
supports for all mixed strategies in the MNE.

In algorithms, we often call this oracle
access.

We can then write a set of inequalities:

 =

 for all

∑
yj∈ supp(y)

y(tj) ⋅ ui(si, tj)

∑
yj∈ supp(y)

y(tj) ⋅ ui(s′ i, tj) si, si ∈ supp(x)

∑
yj∈ supp(y)

y(tj) = 1

t1 tm
s1

sk

Pr [chooses] y(tj) = y tj

ui(si, tj)

We can solve this in  
polynomial time!

What about this?

Support Enumeration
1. Guess the support for the each mixed equilibrium strategy.

Support Enumeration
1. Guess the support for the each mixed equilibrium strategy.

That means enumerate (i.e., try out all) the different possible
supports.

Support Enumeration
1. Guess the support for the each mixed equilibrium strategy.

That means enumerate (i.e., try out all) the different possible
supports.

2. Write and solve the system of linear equations.

Support Enumeration
1. Guess the support for the each mixed equilibrium strategy.

That means enumerate (i.e., try out all) the different possible
supports.

2. Write and solve the system of linear equations.

3. If the system does not return “infeasible”, use the previous
algorithm to verify that what you have computed is indeed a MNE.

Support Enumeration
1. Guess the support for the each mixed equilibrium strategy.

That means enumerate (i.e., try out all) the different possible
supports.

2. Write and solve the system of linear equations.

3. If the system does not return “infeasible”, use the previous
algorithm to verify that what you have computed is indeed a MNE.

4. If it is, break and terminate. Otherwise continue.

Support Enumeration
1. Guess the support for the each mixed equilibrium strategy.

That means enumerate (i.e., try out all) the different possible
supports.

2. Write and solve the system of linear equations.

3. If the system does not return “infeasible”, use the previous
algorithm to verify that what you have computed is indeed a MNE.

4. If it is, break and terminate. Otherwise continue.

Question 1: How do we know that one of the supports will indeed give us a
MNE?

Support Enumeration
1. Guess the support for the each mixed equilibrium strategy.

That means enumerate (i.e., try out all) the different possible
supports.

2. Write and solve the system of linear equations.

3. If the system does not return “infeasible”, use the previous
algorithm to verify that what you have computed is indeed a MNE.

4. If it is, break and terminate. Otherwise continue.

Question 1: How do we know that one of the supports will indeed give us a
MNE?

Question 2: How fast is this algorithm? How many possible supports are there?

2-player Zero-Sum Games

2-player Zero-Sum Games

2 players with pure strategy sets  
 and S = {s1, …, sm1

} T = {t1, …, tm2
}

2-player Zero-Sum Games

2 players with pure strategy sets  
 and S = {s1, …, sm1

} T = {t1, …, tm2
}

The utility functions are such that for any and , we
have

si ∈ S ti ∈ T
u1(si, ti) = − u2(si, ti)

2-player Zero-Sum Games

2 players with pure strategy sets  
 and S = {s1, …, sm1

} T = {t1, …, tm2
}

The utility functions are such that for any and , we
have

si ∈ S ti ∈ T
u1(si, ti) = − u2(si, ti)

We can therefore drop the subscripts and write as a
shorthand for and as a shorthand for .

u(i, j)
u1(si, tj) −u(i, j) u1(si, tj)

2-player Zero-Sum Games

2 players with pure strategy sets  
 and S = {s1, …, sm1

} T = {t1, …, tm2
}

The utility functions are such that for any and , we
have

si ∈ S ti ∈ T
u1(si, ti) = − u2(si, ti)

We can therefore drop the subscripts and write as a
shorthand for and as a shorthand for .

u(i, j)
u1(si, tj) −u(i, j) u1(si, tj)

Player 1 is trying to maximise the utility (maximiser) and Player 2
is trying to minimise it (minimiser).

Rock-Paper-Scissors

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

PaperRock

Rock (R)

Paper (P)

Scissors (S)

Scissors

Rock-Paper-Scissors

0 -1 1

1 0 -1

-1 1 0

PaperRock

Rock (R)

Paper (P)

Scissors (S)

Scissors

Quick Detour: Linear
Algebra Refresher

Quick Detour: Linear
Algebra Refresher

For matrix operations, we will assume column-vector notation.

Quick Detour: Linear
Algebra Refresher

For matrix operations, we will assume column-vector notation.

For example, for , we have:z = (z1, z2, …, zm) ∈ ℝm

Quick Detour: Linear
Algebra Refresher

For matrix operations, we will assume column-vector notation.

For example, for , we have:z = (z1, z2, …, zm) ∈ ℝm

 and .z =

z1
z2
⋮
zm

z⊤ = [z1 z2 ⋯ zm]

Quick Detour: Linear
Algebra Refresher

Quick Detour: Linear
Algebra Refresher

Consider a matrix . Then:A = (ai, j) ∈ ℝm×n

Quick Detour: Linear
Algebra Refresher

Consider a matrix . Then:A = (ai, j) ∈ ℝm×n

Ay =

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n

⋮ ⋮ ⋱ ⋮
am,1 am,2 … am,n

y1
y2
⋮
yn

=

a1,1y1+a1,2y2+⋯ + a1,nyn
a2,1y1+a2,2y2+⋯ + a2,nyn

⋮
am,1y1+am,2y2+⋯ + am,nyn

=

∑n
j=1 a1, jyj

∑n
j=1 a2, jyj

⋮
∑n

j=1 am, jyj

Quick Detour: Linear
Algebra Refresher

Consider a matrix . Then:A = (ai, j) ∈ ℝm×n

Ay =

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n

⋮ ⋮ ⋱ ⋮
am,1 am,2 … am,n

y1
y2
⋮
yn

=

a1,1y1+a1,2y2+⋯ + a1,nyn
a2,1y1+a2,2y2+⋯ + a2,nyn

⋮
am,1y1+am,2y2+⋯ + am,nyn

=

∑n
j=1 a1, jyj

∑n
j=1 a2, jyj

⋮
∑n

j=1 am, jyj

x⊤A = [x1 x2 ⋯ xm]

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n

⋮ ⋮ ⋱ ⋮
am,1 am,2 … am,n

= [∑m
i=1 xiai,1 ∑m

i=1 xiai,2 ⋯ ∑m
i=1 xiai,n]

Quick Detour: Linear
Algebra Refresher

Consider a matrix . Then:A = (ai, j) ∈ ℝm×n

Ay =

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n

⋮ ⋮ ⋱ ⋮
am,1 am,2 … am,n

y1
y2
⋮
yn

=

a1,1y1+a1,2y2+⋯ + a1,nyn
a2,1y1+a2,2y2+⋯ + a2,nyn

⋮
am,1y1+am,2y2+⋯ + am,nyn

=

∑n
j=1 a1, jyj

∑n
j=1 a2, jyj

⋮
∑n

j=1 am, jyj

x⊤A = [x1 x2 ⋯ xm]

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n

⋮ ⋮ ⋱ ⋮
am,1 am,2 … am,n

= [∑m
i=1 xiai,1 ∑m

i=1 xiai,2 ⋯ ∑m
i=1 xiai,n]

 x⊤Ay =
m

∑
i=1

n

∑
j=1

xiai,jyj

Back to 2-player Zero-Sum
Games

Back to 2-player Zero-Sum
Games

Let be the payoff matrix of the game. A = (ai,j) ∈ ℝm×n

Back to 2-player Zero-Sum
Games

Let be the payoff matrix of the game. A = (ai,j) ∈ ℝm×n

Let and be the strategies of the maximiser and the minimiser
respectively.

x y

Back to 2-player Zero-Sum
Games

Let be the payoff matrix of the game. A = (ai,j) ∈ ℝm×n

Let and be the strategies of the maximiser and the minimiser
respectively.

x y

The (expected) utility is u(x, y) = x⊤Ay =
m1

∑
i=1

m2

∑
j=1

(xi ⋅ aij ⋅ yj)

Solution Concept #4:
Minimax (Optimal) Strategies

Solution Concept #4:
Minimax (Optimal) Strategies
Due to von Neumman (1928).

Solution Concept #4:
Minimax (Optimal) Strategies
Due to von Neumman (1928).

Choose the strategy that is the
best possible against any choice
of your opponent.

Solution Concept #4:
Minimax (Optimal) Strategies
Due to von Neumman (1928).

Choose the strategy that is the
best possible against any choice
of your opponent.

In other words, assuming that the
opponent is trying to make sure
you get as little utility as possible,
choose the strategy that
maximises your utility.

Solution Concept #4:
Minimax (Optimal) Strategies
Due to von Neumman (1928).

Choose the strategy that is the
best possible against any choice
of your opponent.

In other words, assuming that the
opponent is trying to make sure
you get as little utility as possible,
choose the strategy that
maximises your utility.

Maximise your minimum possible
utility (hence “minimax”).

Solution Concept #4:
Minimax (Optimal) Strategies
Due to von Neumman (1928).

Choose the strategy that is the
best possible against any choice
of your opponent.

In other words, assuming that the
opponent is trying to make sure
you get as little utility as possible,
choose the strategy that
maximises your utility.

Maximise your minimum possible
utility (hence “minimax”).

Why is this the rational thing to  
do in Zero-Sum games?

Back to 2-player Zero-Sum
Games

Let be the payoff matrix of the game. A = (ai,j) ∈ ℝm×n

Let and be the strategies of the maximiser and the minimiser respectively. x y

The (expected) utility is u(x, y) = x⊤Ay =
m1

∑
i=1

m2

∑
j=1

(xi ⋅ aij ⋅ yj)

Back to 2-player Zero-Sum
Games

Let be the payoff matrix of the game. A = (ai,j) ∈ ℝm×n

Let and be the strategies of the maximiser and the minimiser respectively. x y

The (expected) utility is u(x, y) = x⊤Ay =
m1

∑
i=1

m2

∑
j=1

(xi ⋅ aij ⋅ yj)

Maximiser chooses to maximise ,  

i.e.,

x* min
y∈Δ(Y)

(x*)⊤Ay

x* ∈ arg max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

Back to 2-player Zero-Sum
Games

Let be the payoff matrix of the game. A = (ai,j) ∈ ℝm×n

Let and be the strategies of the maximiser and the minimiser respectively. x y

The (expected) utility is u(x, y) = x⊤Ay =
m1

∑
i=1

m2

∑
j=1

(xi ⋅ aij ⋅ yj)

Maximiser chooses to maximise ,  

i.e.,

x* min
y∈Δ(Y)

(x*)⊤Ay

x* ∈ arg max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

Minimiser chooses to minimise  

i.e.,

y* max
x∈Δ(X)

x⊤Ay*

y* ∈ arg min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

Back to 2-player Zero-Sum
Games

Maximiser chooses to maximise ,  

i.e.,

x* min
y∈Δ(Y)

(x*)⊤Ay

x* ∈ arg max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

Back to 2-player Zero-Sum
Games

Maximiser chooses to maximise ,  

i.e.,

x* min
y∈Δ(Y)

(x*)⊤Ay

x* ∈ arg max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

Minimiser chooses to minimise  

i.e.,

y* max
x∈Δ(X)

x⊤Ay*

y* ∈ arg min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

Back to 2-player Zero-Sum
Games

Maximiser chooses to maximise ,  

i.e.,

x* min
y∈Δ(Y)

(x*)⊤Ay

x* ∈ arg max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

Minimiser chooses to minimise  

i.e.,

y* max
x∈Δ(X)

x⊤Ay*

y* ∈ arg min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

Let = be  

the payoff of the maximiser from the optimal strategy .

vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Back to 2-player Zero-Sum
Games

Maximiser chooses to maximise ,  

i.e.,

x* min
y∈Δ(Y)

(x*)⊤Ay

x* ∈ arg max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

Minimiser chooses to minimise  

i.e.,

y* max
x∈Δ(X)

x⊤Ay*

y* ∈ arg min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

Let = be  

the payoff of the maximiser from the optimal strategy .

vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Let = be  

the minus the payoff of the minimiser from the optimal strategy .

vy min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

y*

Back to 2-player Zero-Sum
Games

Let = be  

the payoff of the maximiser from the optimal strategy .

vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Back to 2-player Zero-Sum
Games

Let = be  

the payoff of the maximiser from the optimal strategy .

vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Let = be  

the minus the payoff of the minimiser from the optimal strategy
.

vy min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

y*

Back to 2-player Zero-Sum
Games

Let = be  

the payoff of the maximiser from the optimal strategy .

vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Let = be  

the minus the payoff of the minimiser from the optimal strategy
.

vy min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

y*

Observation: .vx ≤ vy

Back to 2-player Zero-Sum
Games

Let = be  

the payoff of the maximiser from the optimal strategy .

vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Let = be  

the minus the payoff of the minimiser from the optimal strategy
.

vy min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

y*

Observation: .vx ≤ vy

Because:
max

x∈Δ(X)
min

y∈Δ(Y)
x⊤Ay = min

y∈Δ(Y)
(x*)⊤Ay ≤ (x*)⊤Ay* ≤ max

x∈Δ(X)
x⊤Ay* = min

y∈Δ(Y)
max

x∈Δ(X)
x⊤Ay

Back to 2-player Zero-Sum
Games

Let = be  

the payoff of the maximiser from the optimal strategy .

vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Let = be  

the minus the payoff of the minimiser from the optimal strategy .

vy min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

y*

Observation: .vx ≤ vy

Back to 2-player Zero-Sum
Games

Let = be  

the payoff of the maximiser from the optimal strategy .

vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Let = be  

the minus the payoff of the minimiser from the optimal strategy .

vy min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

y*

Observation: .vx ≤ vy

Back to 2-player Zero-Sum
Games

Let = be  

the payoff of the maximiser from the optimal strategy .

vx max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

x*

Let = be  

the minus the payoff of the minimiser from the optimal strategy .

vy min
y∈Δ(Y)

max
x∈Δ(X)

x⊤Ay

y*

Observation: .vx ≤ vy

von Neumann’s Minimax Theorem (1928, 1944): vx = vy

von Neumann’s Theorem

von Neumann’s Theorem
 = (value of the game)vx = vy v

von Neumann’s Theorem
 = (value of the game)vx = vy v

The theorem can be interpreted as follows:

von Neumann’s Theorem
 = (value of the game)vx = vy v

The theorem can be interpreted as follows:

- For the maximiser, there is a mixed strategy, which, regardless of what
the minimiser does, guarantees the maximiser a payoff of at least .v

von Neumann’s Theorem
 = (value of the game)vx = vy v

The theorem can be interpreted as follows:

- For the maximiser, there is a mixed strategy, which, regardless of what
the minimiser does, guarantees the maximiser a payoff of at least .v

- For the minimiser, there is a mixed strategy, which, regardless of what the
maximiser does, guarantees the minimiser a “loss” or “cost” of at most . v

von Neumann’s Theorem
 = (value of the game)vx = vy v

The theorem can be interpreted as follows:

- For the maximiser, there is a mixed strategy, which, regardless of what
the minimiser does, guarantees the maximiser a payoff of at least .v

- For the minimiser, there is a mixed strategy, which, regardless of what the
maximiser does, guarantees the minimiser a “loss” or “cost” of at most . v

- If the maximiser played a strategy that could only achieve a smaller
payoff, or the minimiser played a strategy that incurred a higher loss, they
could switch to the minimax/maximin (optimal) strategies.

von Neumann’s Theorem
 = (value of the game)vx = vy v

The theorem can be interpreted as follows:

- For the maximiser, there is a mixed strategy, which, regardless of what
the minimiser does, guarantees the maximiser a payoff of at least .v

- For the minimiser, there is a mixed strategy, which, regardless of what the
maximiser does, guarantees the minimiser a “loss” or “cost” of at most . v

- If the maximiser played a strategy that could only achieve a smaller
payoff, or the minimiser played a strategy that incurred a higher loss, they
could switch to the minimax/maximin (optimal) strategies.

- So these strategies are the only reasonable/rational outcomes of the
game.

But wait a second…

But wait a second…

Aren’t MNE reasonable outcomes of games?

But wait a second…

Aren’t MNE reasonable outcomes of games?

We in fact computed an MNE is RPS and it looks pretty
reasonable!

Rock-Paper-Scissors

0, 0 -1, 1 1, -1

1, -1 0, 0 -1, 1

-1, 1 1, -1 0, 0

PaperRock

Rock (R)

Paper (P)

Scissors (S)

Scissors
Consider the symmetric strategy 

(R, P, S) = (1/3, 1/3, 1/3) for  
both players. These are 

optimal strategies.

1/3 1/3 1/3

1/3

1/3

1/3

u1(x1, x2) =
1
3

⋅ 0 +
1
3

⋅ 1 +
1
3

⋅ (−1) = 0

u1(R, x2) = 0

u1(P, x2) = 0

u1(S, x2) = 0

But wait a second…

Aren’t MNE reasonable outcomes of games?

We in fact computed an MNE is RPS and it looks pretty
reasonable!

But wait a second…

Aren’t MNE reasonable outcomes of games?

We in fact computed an MNE is RPS and it looks pretty
reasonable!

Theorem: Let be a pair of mixed strategies of a 2-player
Zero-Sum game. Then and are both optimal strategies if
and only if is a MNE.

(x*,y*)
x* y*

(x*,y*)

Proof of the Theorem

Proof of the Theorem
Assume that is a pair of optimal strategies. (x*,y*)

Proof of the Theorem
Assume that is a pair of optimal strategies. (x*,y*)

By the minimax theorem, we know that  
 
max

x∈Δ(X)
x⊤Ay* = min

y∈Δ(Y)
(x*)⊤Ay = (x*)⊤Ay*

Proof of the Theorem
Assume that is a pair of optimal strategies. (x*,y*)

By the minimax theorem, we know that  
 
max

x∈Δ(X)
x⊤Ay* = min

y∈Δ(Y)
(x*)⊤Ay = (x*)⊤Ay*

Consider a deviation of the maximiser to . From the above, it
has to hold that , i.e., the utility of the
maximiser cannot increase.

x′

(x′)⊤Ay* ≤ (x*)⊤Ay*

Proof of the Theorem
Assume that is a pair of optimal strategies. (x*,y*)

By the minimax theorem, we know that  
 
max

x∈Δ(X)
x⊤Ay* = min

y∈Δ(Y)
(x*)⊤Ay = (x*)⊤Ay*

Consider a deviation of the maximiser to . From the above, it
has to hold that , i.e., the utility of the
maximiser cannot increase.

x′

(x′)⊤Ay* ≤ (x*)⊤Ay*

The argument for the minimiser is similar.

Proof of the Theorem

Proof of the Theorem
Assume that is a MNE.(x*,y*)

Proof of the Theorem
Assume that is a MNE.(x*,y*)

By definition, that means that for the maximiser, we have 
 

 (1)(x*)⊤Ay* = max
x∈Δ(X)

x⊤Ay* ≥ min
y∈Δ(Y)

max
x∈Δ(x)

x⊤Ay

Proof of the Theorem
Assume that is a MNE.(x*,y*)

By definition, that means that for the maximiser, we have 
 

 (1)(x*)⊤Ay* = max
x∈Δ(X)

x⊤Ay* ≥ min
y∈Δ(Y)

max
x∈Δ(x)

x⊤Ay

and for the minimiser we have

Proof of the Theorem
Assume that is a MNE.(x*,y*)

By definition, that means that for the maximiser, we have 
 

 (1)(x*)⊤Ay* = max
x∈Δ(X)

x⊤Ay* ≥ min
y∈Δ(Y)

max
x∈Δ(x)

x⊤Ay

and for the minimiser we have

 (2)(x*)⊤Ay* = min
y∈Δ(Y)

(x*)⊤Ay ≤ max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

Proof of the Theorem
Assume that is a MNE.(x*,y*)

By definition, that means that for the maximiser, we have 
 

 (1)(x*)⊤Ay* = max
x∈Δ(X)

x⊤Ay* ≥ min
y∈Δ(Y)

max
x∈Δ(x)

x⊤Ay

and for the minimiser we have

 (2)(x*)⊤Ay* = min
y∈Δ(Y)

(x*)⊤Ay ≤ max
x∈Δ(X)

min
y∈Δ(Y)

x⊤Ay

By the minimax theorem, we know that the RHS of both (1) and (2)
are equal. This is only possible if the two inequalities are satisfied
with equality both strategies are optimal. ⇒

In 2-player Zero-Sum Games
Minimax Strategies = MNE

In 2-player Zero-Sum Games
Minimax Strategies = MNE

Theorem: Let be a pair of mixed strategies of a 2-player
Zero-Sum game. Then and are both optimal strategies if
and only if is a MNE.

(x*,y*)
x* y*

(x*,y*)

In 2-player Zero-Sum Games
Minimax Strategies = MNE

Theorem: Let be a pair of mixed strategies of a 2-player
Zero-Sum game. Then and are both optimal strategies if
and only if is a MNE.

(x*,y*)
x* y*

(x*,y*)

This provides a proof of the minimax theorem. How?

A few loose ends from
today…

A few loose ends from
today…

How do we solve those systems of linear equations to run the
support enumeration algorithms for computing MNE?

A few loose ends from
today…

How do we solve those systems of linear equations to run the
support enumeration algorithms for computing MNE?

How do we prove von Neumann’s minimax theorem?

A few loose ends from
today…

How do we solve those systems of linear equations to run the
support enumeration algorithms for computing MNE?

How do we prove von Neumann’s minimax theorem?

- Yes, it follows from Nash, but we haven’t proven that either.

A few loose ends from
today…

How do we solve those systems of linear equations to run the
support enumeration algorithms for computing MNE?

How do we prove von Neumann’s minimax theorem?

- Yes, it follows from Nash, but we haven’t proven that either.

- Actually, it was proven before Nash’s Theorem, and has an
easier proof.

A few loose ends from
today…

How do we solve those systems of linear equations to run the
support enumeration algorithms for computing MNE?

How do we prove von Neumann’s minimax theorem?

- Yes, it follows from Nash, but we haven’t proven that either.

- Actually, it was proven before Nash’s Theorem, and has an
easier proof.

How can we compute optimal strategies in 2-player Zero-Sum
games? Algorithms?

A few loose ends from
today…

How do we solve those systems of linear equations to run the
support enumeration algorithms for computing MNE?

How do we prove von Neumann’s minimax theorem?

- Yes, it follows from Nash, but we haven’t proven that either.

- Actually, it was proven before Nash’s Theorem, and has an
easier proof.

How can we compute optimal strategies in 2-player Zero-Sum
games? Algorithms?

Can we have efficient algorithms for computing MNE in (general
sum) games, even for 2 players?

A few loose ends from
today…

How do we solve those systems of linear equations to run the
support enumeration algorithms for computing MNE?

How do we prove von Neumann’s minimax theorem?

- Yes, it follows from Nash, but we haven’t proven that either.

- Actually, it was proven before Nash’s Theorem, and has an
easier proof.

How can we compute optimal strategies in 2-player Zero-Sum
games? Algorithms?

Can we have efficient algorithms for computing MNE in (general
sum) games, even for 2 players?

LINEAR PROGRAMMING

