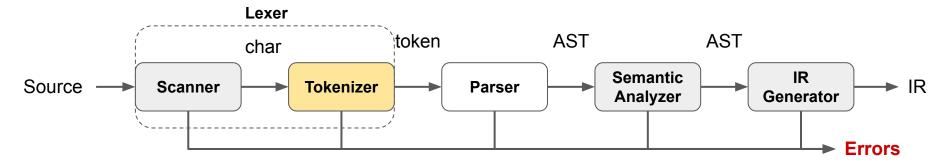
# Compiling Techniques

Lecture 4: Automatic Lexer Generation

### **Automatic Lexer Generation**



- Starting from a collection of regular expressions (RE) we automatically generate a Lexer
- We use finite state automata (FSA) for the construction

### A Finite State Automata

A finite state automata is defined by:

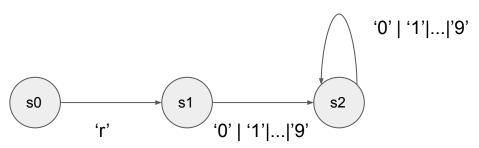
- S, a finite set of states
- Σ, an alphabet, or character set used by the recogniser
- δ(s, c), a transition function (takes a state and a character and returns new state)
- **s0**, the initial or start state
- SF, a set of final states (a stream of characters is accepted iif the automata ends up in a final state)

# Finite State Automata for Regular Expression

#### Example: register names

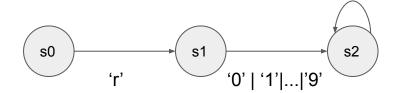
```
register ::= 'r' ('0'|'1'|...|'9') ('0'|'1'|...|'9')*
```

The RE (Regular Expression) corresponds to a recognizer (or a finite state automata):



# Table encoding and skeleton code

To be useful a recognizer must be turned into code



| δ  | ʻr'   | '0'['1'[['9'[ | others |
|----|-------|---------------|--------|
| s0 | s1    | error         | error  |
| s1 | error | s2            | error  |
| s2 | error | s2            | error  |

#### Skeleton recogniser

```
c = next_character()

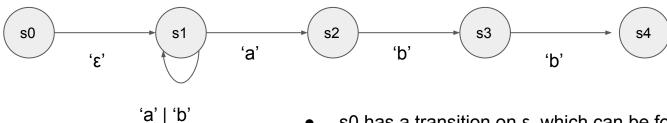
state = "s0"
while c := EOF:
    state = δ(s, c)
    c = next_character()

if (state final):
    return success
else:
    return error
```

### Non-Determinism

#### **Deterministics Finite Automaton**

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might be *hard to construct directly.* 



What about an RE such as (a|b)\* abb?

- s0 has a transition on  $\varepsilon$ , which can be followed without consuming an input character.
- s1 has two transitions on a
- This is a non-deterministic finite automaton (NFA)

### Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):

- All edges leaving the same node have distinct labels
- There is no ε transition

Non-deterministic finite state automata (NFA):

- Can have multiple edges with the same label leaving from the same node
- Can have ε transition.

This means we *might have to backtrack* 

### **Automatic Lexer Generation**

It is possible to systematically generate a lexer for any regular expression.

This can be done in three steps:

- 1. regular expression (RE) → non-deterministic finite automata (NFA)
- 2. NFA → deterministic finite automata (DFA)
- 3. DFA  $\rightarrow$  generated lexer

# 1st step: RE → NFA (Ken Thompson, CACM, 1968)

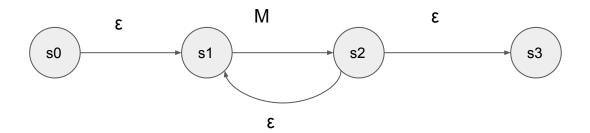
**'**X' 'X'  $M \mid N$ M s0 3 s1 3 s5 s0 [M] 3 3 3 s3 s0 Ν s1 M

# 1st step: RE → NFA (Ken Thompson, CACM, 1968)

#### M N



**M**+



# Step 2: NFA → DFA

Executing a non-deterministic finite automata requires backtracking, which is inefficient. To overcome this, we need to construct a DFA from the NFA.

#### The main idea:

- We build a DFA which has one state for each set of states the NFA could end up in.
- A set of state is final in the DFA if it contains the final state from the NFA.
- Since the number of states in the NFA is finite (n), the number of possible sets of states is also finite (maximum 2<sup>n</sup>, hint: state encoded as binary vectors).

### From NFA to DFA

Assuming the state of the NFA are labelled si and the states of the DFA we are building are labelled qi.

### We have two key functions:

- reachable(si, α) returns the set of states reachable from si by consuming character α
- closure(si) returns the set of states reachable from si by ε (e.g. without consuming a character)

# Algorithm

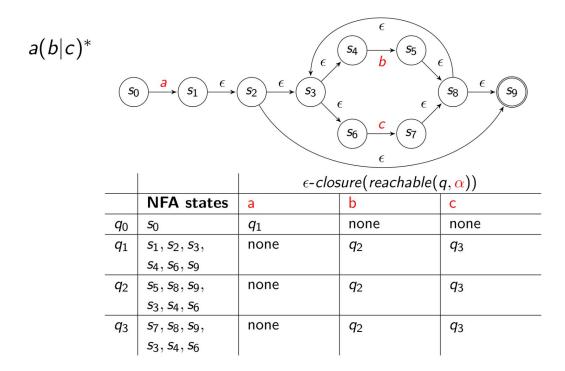
#### The Subset Construction algorithm (Fixed point iteration)

```
q_0 = \epsilon\text{-}closure(s_0); Q = \{q_0\}; add q_0 to WorkList while (WorkList not empty) remove q from WorkList for each \alpha \in \Sigma subset = \epsilon\text{-}closure(reachable(q, \alpha)) \delta(q, \alpha) = subset if (subset \notin Q) then add subset to Q and to WorkList
```

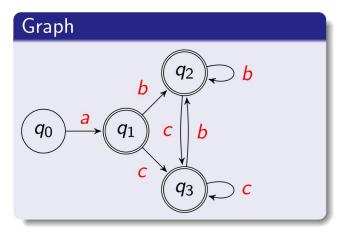
#### The algorithm (in English)

- Start from start state  $s_0$  of the NFA, compute its  $\epsilon$ -closure
- Build subset from all states reachable from  $q_0$  for character  $\alpha$
- ullet Add this subset to the transition table/function  $\delta$
- If the subset has not been seen before, add it to the worklist
- Iterate until no new subset are created

# NFA for a(b|c)\*



# DFA for a(b|c)\*



| Table encoding |       |       |                       |  |  |
|----------------|-------|-------|-----------------------|--|--|
|                | а     | b     | С                     |  |  |
| $q_0$          | $q_1$ | error | error                 |  |  |
| $q_1$          | error | $q_2$ | <b>q</b> 3            |  |  |
| $q_2$          | error | $q_2$ | <b>q</b> 3            |  |  |
| <b>q</b> 3     | error | $q_2$ | <b>q</b> <sub>3</sub> |  |  |

- Smaller than the NFA
- All transitions are deterministic (no need to backtrack!)
- Could be even smaller (see EaC§2.4.4 Hopcroft's Algorithm for minimal DFA)
- Can generate the lexer using skeleton recogniser seen earlier

### What can be so hard

Poor language design can complicate lexing

- PL/I does not have reserved words (keywords):
   if (cond) then then = else; else else = then
- In Fortran & Algol68 blanks (whitespaces) are insignificant:

```
- do 10 i = 1,25 \sim= do 10 i = 1,25 (loop, 10 is statement label)
- do 10 i = 1.25 \sim= do10i = 1.25 (assignment)
```

• In C, C++, Java string constants can have special characters: newline, tab, quote, comment delimiters, . . .

# Building a Lexer

### The important point:

- All this technology lets us automate lexer construction
- Implementer writes down regular expressions
- Lexer generator builds NFA, DFA and then writes out code
- This reliable process produces fast and robust lexers

### For most modern language features, this works:

- As a language designer you should think twice before
- introducing a feature that defeats a DFA-based lexer
- The ones we have seen (e.g. insignificant blanks, non-reserved keywords)
  have not proven particularly useful or long lasting

## **Next Lecture**

- Context-Free Grammars
- Dealing with ambiguity
- Recursive descent parser