
Compiling Techniques
Lecture 7: Abstract Syntax

Where are we?

A parser does more than simply recognize syntax.

In a multi-pass compiler, the parser builds a syntax tree, that can either be:

- a concrete syntax tree (aka parser tree) that directly corresponds to the
parsers context-free grammar;

- a simplified abstract syntax tree (AST) that abstract some details away.
2

ScannerSource IR

Errors

Tokenizer

char

Parser Semantic
Analyzer

token

IR
Generator

AST AST
Lexer

Example: Concrete Syntax Tree (Parse Tree)

3

Example: Grammar for arithmetic expressions in EBNF form

Expr ::= Term ((‘+’ | ‘-’) Term)*
Term ::= Factor ((‘*’ | ‘/’) Factor)*
Factor ::= number | ‘(‘ Expr ‘)’

Removing EBNF syntax

Expr ::= Term Terms
Terms ::= (‘+’ | ‘-’) Term Terms | ε
Term ::= Factor Factors
Factors ::= (‘*’ | ‘/’) Factor Factors | ε
Factor ::= number | ‘(‘ Expr ‘)’

Example: Concrete Syntax Tree (Parse Tree)

4

Example: Grammar for arithmetic expressions in EBNF form

Expr ::= Term ((‘+’ | ‘-’) Term)*
Term ::= Factor ((‘*’ | ‘/’) Factor)*
Factor ::= number | ‘(‘ Expr ‘)’

Removing EBNF syntax + simplifications

Expr ::= Term ((‘+’ | ‘-’) Expr | ε)
Term ::= Factor ((‘*’ | ‘/’) Term | ε)
Factor ::= number | ‘(‘ Expr ‘)’

Example: Concrete Syntax Tree (Parse Tree)

5

Grammar for arithmetic expression

Expr ::= Term ((‘+’ | ‘-’) Expr | ε)
Term ::= Factor ((‘*’ | ‘/’) Term | ε)
Factor ::= number | ‘(‘ Expr ‘)’

Concrete Syntax Tree for
3 * (4 + 5)

The concrete syntax tree contains
a lot of unnecessary information!

It is possible to simplify the tree by
removing redundant information.

Abstract Grammar

The simplifications lead to a new simpler context-free grammar called
Abstract Grammar

6

Example: Abstract grammar for arithmetic expressions

Expr ::= BinOp | intLiteral
BinOp ::= Expr Op Expr
Op ::= add | sub | mul | div

Abstract Syntax Tree for 3 * (4 + 5):

Choice of Abstract Grammar

For a given concrete grammar, there exists numerous abstract grammars.
We pick the most suitable grammar for the compiler.

7

Example: Abstract grammar for arithmetic expressions
Expr ::= BinOp | intLiteral
BinOp ::= Expr Op Expr
Op ::= add | sub | mul | div

Alternative abstract grammar for arithmetic expressions
Expr ::= AddOp | SubOp | MulOp | DivOp | intLiteral
AddOp ::= Expr add Expr
SubOp ::= Expr sub Expr
MulOp ::= Expr mul Expr
DivOp ::= Expr div Expr

Abstract Syntax Tree

The Abstract Syntax Tree (AST) forms the main intermediate representation of the
compiler’s front-end.

We will perform Semantic Analysis on this representation, that is:

- Name analysis (are all names declared before they are used?)
- Type checking

8

ScannerSource IR

Errors

Tokenizer

char

Parser Semantic
Analyzer

token

IR
Generator

AST AST
Lexer

Implementation of the AST

The AST can be implemented like any other tree data structure

9

class Expr(ABC):
 pass

@dataclass
class BinOp(Expr):
 lhs: Expr
 op: str
 rhs: Expr

@dataclass
class IntLiteral(Expr):
 value: int

BinOp(IntLiteral(3), "*", BinOp(IntLiteral(4), "+", IntLiteral(5)))

Abstract grammar
Expr ::= BinOp | intLiteral
BinOp ::= Expr Op Expr
Op ::= add | sub | mul | div

Op should better be implemented as an Enum

In this course, we use a framework to help us to implement our compiler.

This framework is called xDSL. It implements the same concepts that are found in
the MLIR - Multi-Level IR Compiler Framework that is used in industry.

We will introduce new concepts of the framework as we go along.

Today we discuss how to represent ASTs with xDSL.

xDSL and MLIR

10https://github.com/xdslproject/xdsl/ https://mlir.llvm.org/

https://github.com/xdslproject/xdsl/
https://mlir.llvm.org/

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST.

11

@irdl_op_definition
class BinOp(IRDLOperation):
 name = "BinOp"
 op = prop_def(StringAttr)
 lhs = region_def()
 Rhs = region_def()

@irdl_op_definition
class IntLiteral(IRDLOperation):
 name = "IntLiteral"
 value = prop_def(IntegerAttr[IntegerType])

@irdl_op_definition
class BinOp(IRDLOperation):
 name = "BinOp"
 op = prop_def(StringAttr)
 lhs = region_def()
 Rhs = region_def()

@irdl_op_definition
class IntLiteral(IRDLOperation):
 name = "IntLiteral"
 value = prop_def(IntegerAttr[IntegerType])

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST.

12

IRDLOperation is the superclass of all AST
nodes

@irdl_op_definition
class BinOp(IRDLOperation):
 name = "BinOp"
 op = prop_def(StringAttr)
 lhs = region_def()
 Rhs = region_def()

@irdl_op_definition
class IntLiteral(IRDLOperation):
 name = "IntLiteral"
 value = prop_def(IntegerAttr[IntegerType])

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST.

13

Each Operation has a name

IRDLOperation is the superclass of all AST
nodes

@irdl_op_definition
class BinOp(IRDLOperation):
 name = "BinOp"
 op = prop_def(StringAttr)
 lhs = region_def()
 Rhs = region_def()

@irdl_op_definition
class IntLiteral(IRDLOperation):
 name = "IntLiteral"
 value = prop_def(IntegerAttr[IntegerType])

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST.

14

Each Operation has a name

Metadata is represented by Attributes

IRDLOperation is the superclass of all AST
nodes

@irdl_op_definition
class BinOp(IRDLOperation):
 name = "BinOp"
 op = prop_def(StringAttr)
 lhs = region_def()
 Rhs = region_def()

@irdl_op_definition
class IntLiteral(IRDLOperation):
 name = "IntLiteral"
 value = prop_def(IntegerAttr[IntegerType])

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST.

15

Each Operation has a name

Metadata is represented by Attributes

A region represents nested structure, such as
the children of a node in the AST

IRDLOperation is the superclass of all AST
nodes

@irdl_op_definition
class BinOp(IRDLOperation):
 name = "BinOp"
 op = prop_def(StringAttr)
 lhs = region_def()
 Rhs = region_def()

@irdl_op_definition
class IntLiteral(IRDLOperation):
 name = "IntLiteral"
 value = prop_def(IntegerAttr[IntegerType])

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST.

Implementation of the AST with xDSL

16

Each Operation has a name

Metadata is represented by Attributes

A region represents nested structure, such as
the children of a node in the AST

A macro generates helpful boilerplate code to
make printing, testing, etc. easy

IRDLOperation is the superclass of all AST
nodes

xDSL provides a generic and flexible (but verbose) interface to create Operations:

 node = Op.create(attributes={"key": value}, regions=[...])

We can easily hide the boilerplate, for example for IntLiteral:

This allows us to write:

Creating Operations with xDSL

17

class IntLiteral(IRDLOperation):
 @staticmethod
 def get(value: int) -> IntLiteral:
 return IntLiteral.create(attributes={
 "value": IntegerAttr.from_int_and_width(value, 32)})

BinOp.get(IntLiteral.get(3), "*",

 BinOp.get(IntLiteral.get(4), "+", IntLiteral.get(5)))

First Benefits of using xDSL

Using a framework like xDSL has many benefits.
For example, can we easily debug and print our created AST:

18

>>> xdsl.printer.Printer().print_op(
BinOp.get(IntLiteral.get(3), "*",

 BinOp.get(IntLiteral.get(4), "+", IntLiteral.get(5))))

"BinOp"() <{"op" = "*"}> ({
 "IntLiteral"() <{"value" = 3 : !i32}>
}, {
 "BinOp"() <{"op" = "+"}> ({

"IntLiteral"() <{"value" = 4 : !i32}>
 }, {

"IntLiteral"() <{"value" = 5 : !i32}>
 })
})

ChocoPy AST in xDSL – Operations

The CW1 template provides an implementation of the ChocoPy AST in xDSL
which defines the following 22 Operations:

Program

TypeName, ListType, TypedVar

FuncDef, GlobalDecl, NonLocalDecl, VarDef

If, While, For, Pass, Return, Assign

Literal, ExprName, UnaryExpr, BinaryExpr,
IfExpr, ListExpr, CallExpr, IndexExpr

19

ChocoPy AST in xDSL – Attributes

An Attribute represents some compile-time metadata of an Operation

Examples of Attributes in the ChocoPy AST are:

- Names, such as the names of functions, variables, or types
- Literal values, e.g. 4, “Hello”, or True
- Operator of binary and unary operations, e.g. +, -, /, ==, !=, …

To represent this different metadata, we use these 4 types of Attributes:

StringAttr, IntegerAttr, BoolAttr, NoneAttr

The NoneAttr represents the None value of ChocoPy.

20

ChocoPy AST in xDSL – Regions

We use Regions to represent nesting.

E.g. BinaryExpr has two regions,
one for each Operand.

Regions can have more than one
Operation in them!

Consider for example the If Statement:

The second region represents the
then-block, the third region the else-block.

21

"BinaryExpr"() <{"op" = "+"}> ({
 "Literal"() <{"value" = 4 : !i32}>
}, {
 "Literal"() <{"value" = 5 : !i32}>
})

"If"() ({
 "Literal"() <{"value" = !bool<True>}>
}, {
 "Literal"() <{"value" = 4 : !i32}>
 "Literal"() <{"value" = 8 : !i32}>
}, {
 "Literal"() <{"value" = 15 : !i32}>
 "Literal"() <{"value" = 16 : !i32}>
})

