Introduction to Algorithms and Data Structures

Lecture 16: Dijkstra's Algorithm (for shortest paths)

Mary Cryan

School of Informatics University of Edinburgh

Welcome back!

IADS – Lecture 16 – slide 2

Directed and Undirected Graphs

We return to the world of graphs and directed graphs.

A graph is a mathematical structure consisting of a set of vertices and a set of edges connecting the vertices.

Formally:
$$G = (V, E)$$
, where V is a set and $E \subseteq V \times V$.

▶ G = (V, E) undirected if for all $v, w \in V$:

$$(v, w) \in E \iff (w, v) \in E.$$

Otherwise directed.

Directed ~ arrows (one-way) Undirected ~ lines (two-way)

Road Networks

The weighted case is a very natural graph model - eg, road network where vertices represent intersections, edges represent road segments, and the weight of an edge is the distance of that road segment.

IADS - Lecture 16 - slide 4

Shortest paths in graphs

In this lecture we will consider *weighted* graphs (and digraphs) G = (V, E) where there is a weight function $w : E \to \mathbb{R}$ defining weights for all arcs/edges.

We are interested in evaluating the cost of shortest paths (from specific node u to specific node v) in the given weighted graph.

We will focus on single-source shortest paths, where we want to find the minimum path from node s to node v, for every v.

Input: Graph $G=(V,E), w:E\to\mathbb{R}^+$ a weighted graph/digraph (no negative weights), $s\in V$ a specific source vertex.

Single-source shortest paths

unweighted graphs and digraphs

We can use breadth-first search to explore a graph G = (V, E) from a specific vertex $s \in V$. $\Theta(|V| + |E|)$ running-time.

(in the unweighted case, the shortest path is the one with fewest edges)

weighted graphs and digraphs

- Dijkstra's algorithm, will compute the single source shortest paths (and their values) for any graph or directed graph without negative weights.
- Dijkstra's Algorithm is a greedy algorithm.
- Makes use of a Priority Queue (as introduced at the end of L11 in s1).
- We will see that (with the use of a (Min) Heap to deliver the Priority Queue), Dijkstra can achieve running-time $O((|V| + |E|) \lg(|V|))$, or $O((m+n) \lg(n))$.

Dijkstra's Algorithm

A Greedy algorithm which grows the set S of "shortest path solved" vertices.

- \triangleright *S* has some vertices where shortest path from *S* is known (blue edges).
- ► S has some outgoing edges (from S to outside S) (fringe edges in purple) (fringe vertices are those accessible by a fringe edge)

At each iteration, Dijkstra's Algorithm will add the fringe vertex $v \in V \setminus S$ with the shortest candidate path into S.

Dijkstra - how to select the next fringe vertex?

- We have some vertices already in S ($\{s, u, u'\}$ in picture). We already know the optimum shortest path from s (d[v]) for every $v \in S$.
- We need to consider the fringe vertices (v, v', v" in picture) and add the one with shortest candidate path into S. For our picture ... v's candidate path is d[u'] + w(u', v) v' has two candidate paths: d[u] + w(u, v') and d[u'] + w(u', v')

v'' has candidate path d[s] + w(s, v'') = w(s, v'') (as d[s] is 0)

Dijkstra - rules for selecting next fringe vertex

Arrays: We use arrays d and π of length n = |V| each:

d[v] to (eventually) hold shortest-path distance $d_G(s,v)$ from s to v $\pi[v]$ to (eventually) be v's predecessor along that shortest path.

Initialisation:

$$d[v] \leftarrow \left\{ \begin{array}{ll} 0 & v = s \\ \infty & v \in V \setminus \{s\}. \end{array} \right.$$

We initialise predecessor array π by $\pi[v] \leftarrow \text{NIL}$ for every $v \in V$.

Induction step: (while S still has fringe edges to $V \setminus S$), then for every fringe vertex $v \in V \setminus S$, compute v's (current) shortest candidate path/predecessor

$$\begin{array}{lcl} d[v] & \leftarrow & \displaystyle \min_{u \in S} \; \{d[u] + w(u,v)\} \\ \pi[v] & \leftarrow & \displaystyle \arg \min_{u \in S} \; \{d[u] + w(u,v)\}. \end{array}$$

- Let $v^* \in V \setminus S$ be the fringe vertex with $\min_{\text{over all fringe vertices}} d[v]$.
- ▶ Update $S \leftarrow S \cup \{v^*\}$, then $d[v^*]$ and $\pi[v^*]$ become fixed from now on.

Terminate when S no longer has fringe edges.

Worked example - initialisation

To start we have $S = \{s\}$, and fringe vertices are $\{a, c, d\}$. Arrays are:

Worked example - adding 2nd vertex

Fringe vertices are $\{a, c, d\}$

- ▶ a has candidate path value d[s] + w(s, a) = 0 + 5 = 5
- ightharpoonup c has candidate path value d[s] + w(s, c) = 0 + 4 = 4
- ▶ d has candidate path value $d[s] + w(s, d) = 0 + 3 = 3 \dots \Rightarrow S \leftarrow S \cup \{d\}$

Worked example - $S = \{s, d\}$

 $S = \{s, d\}$, fringe vertices are now $\{a, c, e, f\}$. Arrays are:

Worked example - adding 3rd vertex

 $S = \{s, d\}$, fringe vertices are now $\{a, c, e, f\}$.

- ▶ a has extra candidate path with $\pi[a] = d$, better value d[d] + w(d, a) = 4.
 - c's existing candidate path, still available, has value 4.
 - New fringe vertices e, f have paths $(\pi[\cdot] = d)$ with values 11, 9 resp.

$$\Rightarrow$$
 EITHER $S \leftarrow S \cup \{c\}$ OR $S \leftarrow S \cup \{a\}$ IADS – Lecture 16 – slide 13

Worked example - $S = \{s, d, c\}$

$$S = \{s, d, c\}$$
. Arrays are:

Worked example - adding 4th vertex

 $S = \{s, d, c\}$, fringe vertices are now $\{a, b, e, f\}$.

- \blacktriangleright We know a has candidate path value 4 (via d), e value 11, f's value 9.
- New fringe vertex b has candidate path value d[c] + w(c, b) = 4 + 3 = 7

a has an extra candidate path with value
$$d[c] + w(c, a) = 4 + 5 = 9 > 5$$

... ⇒ $S \leftarrow S \cup \{a\}$ with $\pi[a] \leftarrow d$. IADS – Lecture 16 – slide 15

Worked example - $S = \{s, d, c, a\}$

$$S = \{s, d, c, a\}$$
. Arrays are:

Worked example - adding 5th vertex

 $S = \{s, d, c, a\}$, fringe vertices are now $\{b, e, f\}$.

- We know e and f have candidate paths $(\pi[\cdot] = d)$ with values 11, 9.
 - Fringe vertex b has a new candidate path value d[a] + w(a, b) = 4 + 3 = 7, same value as existing path via c.

$$\Rightarrow S \leftarrow S \cup \{b\} \text{ with } \pi[b] \leftarrow c/a.$$

Worked example - $S = \{s, d, c, a, b\}$

$$S = \{s, d, c, a, b\}$$
. Arrays are:

$$d: \boxed{0} \boxed{4} \boxed{7} \boxed{4} \boxed{3} \boxed{\infty} \boxed{\infty} \boxed{\pi} : \boxed{-} \boxed{d} \boxed{c} \boxed{s} \boxed{s} \boxed{-} \boxed{-}$$

Worked example - adding 6th vertex

 $S = \{s, d, c, a, b\}$, fringe vertices are now $\{e, f\}$.

- ▶ f has existing candidate path $(\pi[f] = d)$ with value 9.
 - e has a new candidate path $(\pi[e] = b)$ with value d[b] + w(b, e) = 7 + 5 = 12, worse than existing candidate path via d.

$$\Rightarrow S \leftarrow S \cup \{f\} \text{ with } \pi[f] \leftarrow d.$$

Worked example - $S = \{s, d, c, a, b, f\}$

$$S = \{s, d, c, a, b, f\}$$
. Arrays are:

Worked example - adding last vertex

 $S = \{s, d, c, a, b, f\}$, fringe vertex set is just $\{e\}$.

• e's best candidate path is with $\pi[e] = d$ with value 11 $\Rightarrow S \leftarrow S \cup \{e\}$ with $\pi[e] \leftarrow d$.

Example - final "shortest path tree" and arrays

 $S = \{s, d, c, a, b, f, e\}$, no fringe edges/vertices.

final "shortest path tree"

Observe that the collection of edges contributing to all shortest paths forms a "shortest path tree" (a directed arborescence out of the source vertex s)

Simple Implementation of Dijkstra

Algorithm InitializeSingleSource(G, s)

- 1. **for** each vertex $v \in V[G]$
- 2. **do** $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$

Algorithm DijkstraSimple(G, s)

- 1. InitializeSingleSource(G, s)
- 2. $d[s] \leftarrow 0, S \leftarrow \{s\}$
- 3. **while** $V[G] \setminus S \neq \emptyset$ **and** there are fringe edges
- 4. $\min_{u} \leftarrow s, \min_{d} \leftarrow \infty, \min_{v} \leftarrow \text{NIL}$
- 5. **do for** $u \in S, v \in V[G] \setminus S, (u, v) \in E(G)$
- 6. **if** $d[u] + w(u, v) < min_d$
- 7. $\min_{d} \leftarrow d[u] + w(u, v), \min_{u} \leftarrow u, \min_{v} \leftarrow v$
- 8. $S \leftarrow S \cup \{\min_{v}\}, d[\min_{v}] \leftarrow \min_{d}, \pi[\min_{v}] \leftarrow \min_{u}$
- 9. return d, π

Recovering the shortest paths

(in a graph/digraph with non-negative weights)
In practice, we will want the short paths themselves, not just the values.

Some facts that help us:

- No shortest path from s to any v can contain a cycle. why?: If a path p contains a cycle, cycle's weight is ≥ 0 , we could delete it to get another $s \rightarrow v$ with fewer edges, and distance no greater.
- Every shortest path has at most n-1 edges. why?: no cycles, so can visit any node at most once.
- If $s = v_0, v_1, ..., v_k$ is a shortest path to v_k , then every prefix $s = v_0, v_1, ..., v_i$ is a shortest path to v_i . why?: If we had a shorter path for one of the v_i , we could replace section $s = v_0, v_1, ..., v_i$ to get a shorter path for v_k too.

The third point allows us to use the π array to recursively build the short path for any $v \in S$ (lookup $\pi[v]$ to get last edge $(\pi[v], v)$, lookup $\pi[\pi[v]], \ldots$)

A more efficient implementation

- Dijkstra is "all about" the ranking/management of the fringe edges/vertices.
- ► The DijkstraSimple implementation has in-efficiency, in that it reconsiders/recalculates existing fringe edges at later steps.
- ▶ Improvement: Eliminate "re-calculation" for fringe edges:
 - Let $d[v], \pi[v]$ store the "shortest so far" $d[\cdot] + w(\cdot, v)$ for every current fringe vertex v.
 - After a new change $(S \leftarrow S \cup \{v^*\})$, limit calculation to the new fringe edges: consider the (v^*, w) edges for $w \in V[G] \setminus (S \cup \{v^*\})$ and possibly update the $d[w], \pi[w]$ entries.

This can reduce the work for adding 1 vertex to become O(n) (in fact $O(out(v^*))$) rather than potentially $\Omega(m)$ (as with DijkstraSimple). However, we need to be able to store the fringe vertices in a Data Structure which will allow us to identify/access the optimum fringe vertex quickly.

Dijkstra's Algorithm using a (Min) Heap

- ▶ *G* as Adjacency list can visit "outgoing edges from v" in O(out(v)).
- Maintain a (Min) Heap priority queue Q of current fringe vertices, with their current shortest path value (so far) as key. (we will need to be able to update/reduce keys, after a successful Relax operation).
- ▶ Q.extractMin() \Leftrightarrow "add the best fringe vertex v" to S.

Implementation using (Min) Heap

Algorithm InitializeSingleSource(G, s)

- 1. **for** each vertex $v \in V[G]$
- 2. **do** $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$

Algorithm Relax(G, (u, v))

- 1. if $d[v] = \infty$
- 2. **then** $d[v] \leftarrow d[u] + w(u, v)$
- 3. $\pi[v] \leftarrow u$
- 4. Q.insertItem(d[v], v)
- 5. **if**(d[v] > d[u] + w(u, v))
- 6. **then** $d[v] \leftarrow d[u] + w(u, v)$
- 7. $\pi[v] \leftarrow u$
- 8. Q.reduceKey(d[v], v)

Implementation using (Min) Heap

Edsger Dijkstra

Algorithm Dijkstra(G, s)

- 1. InitializeSingleSource(G, s)
- 2. Q.insertItem(0, s)
- 3. $d[s] \leftarrow 0$
- 4. **while** ¬(Q.isEmpty())
- 5. **do** $(d^*, u) \leftarrow Q.extractMin()$
- 6. **for** $x \in Out(u)$
- 7. Relax(G, (u, x))

(Min) Heaps

In Lecture 11 we saw how we can use a Heap to implement a Priority Queue with n items, so operations have the following worst-case running-times:

Q.isEmpty()	$\Theta(1)$
Q.minElement()	$\Theta(1)$
Q.extractMin()	$O(\lg(n))$
Q.insertItem(d,v)	$O(\lg(n))$
Q.reduceKey(d',v)	$O(\lg(n))$

Strictly speaking, we demonstrated this for a Max Heap - however, by exchanging > and < we can transform a Max Heap implementation into a Min Heap structure, same running-times.

updates: We can also add the operation Q.reduceKey(d', v) (to replace v's current key by a smaller d') to operate in $O(\lg(n))$ worst-case time.

- ▶ Use the "bubble up" of insertItem, but may start higher than a leaf.
- ightharpoonup (we assume we have an index supporting jumps to v's cell of the Heap)

Running-time analysis for (Heap) Dijkstra

- ▶ InitializeSingleSource takes O(n) time at most.
- ▶ lines 2.-3. take *O*(1).
- ► Take an "aggregated" approach to bounding run-time of the while
- A vertex v can be added to the Heap only once (need $d[v] = \infty$ in Relax) and hence, only removed once
 - $\Rightarrow O(n.\lg(n))$ covers all the Q.extractMin() and Q.insertItem(d,v) calls.
- ▶ Apart from the insertItem calls, a call to Relax takes $O(1) + T_{\text{reduceKev}}(n) = O(1) + O(\lg(n))$ time.
- We might call Relax at most *twice* for every edge $e \in E$... as we only call Relax(G, (u, v)) immediately after an endpoint has joined S. Hence total for *all* Relax calls is $O(m + m \cdot \lg(n))$ time.
- ▶ Other work done by the **while** is at most O(n).

$$O((n+m)\lg(n))$$
 time overall

Reading

- ► CLRS, Ed 4: Sections 20.1 (graph rep.), Section 22.2 (shortest-path reps) and Sections 22.3 for Dijkstra. Some proofs in 22.5.
- ▶ "Algorithms Illuminated" by Roughgarden: Sections 9.1, 9.2, 9.4 and (for the faster Heap implementation) 10.4, 10.5.

Our Heap version of Dijkstra's Alg is most similar (but *slightly* different) to the [CLRS] presentation.