Introduction to Algorithms and Data Structures

Lecture 16: Dijkstra's Algorithm (for shortest paths)

Mary Cryan

School of Informatics
University of Edinburgh

IADS — Lecture 16 — slide 1

Welcome back!

IADS — Lecture 16 — slide 2

Directed and Undirected Graphs

We return to the world of graphs and directed graphs.

» A graph is a mathematical structure consisting of a set of vertices and a
set of edges connecting the vertices.

Formally: G = (V,E), where Visasetand EC V x V.
» G = (V, E) undirected if for all vyw € V:

(v,w) e E & (w,v) € E.

Otherwise directed.

Directed ~ arrows (one-way)
Undirected ~ lines (two-way)

IADS — Lecture 16 — slide 3

Road Networks

The weighted case is a very natural graph model - eg, road network where
vertices represent intersections, edges represent road segments, and the weight
of an edge is the distance of that road segment.

IADS — Lecture 16 — slide 4

Shortest paths in graphs

In this lecture we will consider weighted graphs (and digraphs) G = (V/, E) where
there is a weight function w : E — R defining weights for all arcs/edges.

We are interested in evaluating the cost of shortest paths (from specific node u
to specific node v) in the given weighted graph.

We will focus on single-source shortest paths, where we want to find
the minimum path from node s to node v, for every v.

Input: Graph G = (V,E),w: E — R" a weighted graph/digraph (no negative
weights), s € V a specific source vertex.

IADS — Lecture 16 — slide 5

Single-source shortest paths

unweighted graphs and digraphs

We can use breadth-first search to explore a graph G = (V, E) from a
specific vertex s € V. O(|V/|+ |E|) running-time.

(in the unweighted case, the shortest path is the one with fewest edges)

weighted graphs and digraphs

» Dijkstra’s algorithm, will compute the single source shortest paths (and
their values) for any graph or directed graph without negative weights.

» Dijkstra's Algorithm is a greedy algorithm.
» Makes use of a Priority Queue (as introduced at the end of L11 in s1).

» We will see that (with the use of a (Min) Heap to deliver the Priority
Queue), Dijkstra can achieve running-time O((|V|+ |E|)1g(IV])), or
O((m+ n)lg(n)).

IADS — Lecture 16 — slide 6

Dijkstra’s Algorithm

A Greedy algorithm which grows the set S of “shortest path solved” vertices.

» S has some vertices where shortest path from S is known (blue edges).

» S has some outgoing edges (from S to outside S) (fringe edges in purple)
(fringe vertices are those accessible by a fringe edge)

At each iteration, Dijkstra’'s Algorithm will add the fringe vertex v € V' \ S with
the shortest candidate path into S.

IADS — Lecture 16 — slide 7

Dijkstra - how to select the next fringe vertex?

» We have some vertices already in S ({s, u, u’} in picture).
We already know the optimum shortest path from s (d[v]) for every v € S.
» We need to consider the fringe vertices (v, v’, v’ in picture) and add the
one with shortest candidate path into S. For our picture ...
v's candidate path is d[u’] + w(u’, v)
v’ has two candidate paths: d[u] + w(u,v’) and d[u’] + w(u’,v’)
v’ has candidate path d[s] + w(s,v”) = w(s,v") (as dIs] is 0)

IADS — Lecture 16 — slide 8

Dijkstra - rules for selecting next fringe vertex

Arrays: We use arrays d and 7t of length n = |V/| each:

d[v] to (eventually) hold shortest-path distance dg (s, v) from s to v
] to (eventually) be v's predecessor along that shortest path.

2,
<

Initialisation:

0 v=s
dM‘_{ s veV\(sh

We initialise predecessor array 7t by 7t[v] « NIL for every v € V.

Induction step: (while S still has fringe edges to V \ S), then for every fringe
vertex v € V'\ S, compute v's (current) shortest candidate path/predecessor

dlvl] « min {d[v] + w(u,v)}
uesS

milv] argmeigl {dlu] + w(u,v)}

» Let v* € V\'S be the fringe vertex with mingyer ail fringe verticesd[V].
» Update S + SU{v*}, then d[v*] and mt[v*] become fixed from now on.

Terminate when S no longer has fringe edges.
IADS - Lecture 16 — slide 9

Worked example - initialisation

To start we have S = {s}, and fringe vertices are {a, ¢, d}. Arrays are:

d:[0J]oo]ooJoofoo[oofoof m:|[-[-[-]-]-[-]-
s a b c d e f s a b ¢ d e f

|

IADS — Lecture 16 — slide 10

Worked example - adding 2nd vertex

Y
o —(r)
Fringe vertices are {a, ¢, d}

» 3 has candidate path value d[s] + w(s,a) =0+5=5
» ¢ has candidate path value d[s] + w(s,c) =0+4 =4
» d has candidate path value d[s] + w(s,d) =0+3=3... = S« SU{d}

IADS — Lecture 16 — slide 11

Worked example - S = {s, d}
o T
T\S : 3/0
5 \(%/
&“/ "
AN

S ={s, d}, fringe vertices are now {a, c, e, f}. Arrays are:

d:[0J]oofooJoo[3]oofJoof m:|[-[-[-[]-[s[-]-]
s a b c d e f s a b ¢ d e f

IADS — Lecture 16 — slide 12

Worked example - adding 3rd vertex

Y
s —(r)
S ={s, d}, fringe vertices are now {a, c, e, f}.

» 3 has extra candidate path with 7[a] = d, better value d[d] + w(d,a) = 4.
» ('s existing candidate path, still available, has value 4.
» New fringe vertices e, f have paths (7t[-] = d) with values 11, 9 resp.

= EITHER S = SU{c} OR S = SU{a} IADS — Lecture 16 — slide 13

Worked example - S ={s, d, c}

S ={s,d, c}. Arrays are:
d:[0]oo]oo[4][3]oofoof m:[-[-[-[s[s]-]-
s a b ¢ d e f s a b ¢ d e f

|

IADS — Lecture 16 — slide 14

Worked example - adding 4th vertex

Y
o —(r)
S ={s,d, c}, fringe vertices are now {a, b, e, }.

» We know a has candidate path value 4 (via d), e value 11, f's value 9.
» New fringe vertex b has candidate path value d[c] + w(c,b) =443 =7
» 3 has an extra candidate path with value d[c] + w(c,a) =4+5=9>5

o= S SU{a} with 7ila] d. IADS — Lecture 16 — slide 15

Worked example - S ={s, d, c, a}

//@\\
Cf\ A
&

5

o
5\%‘/3
U

3

o

S ={s,d, c,a}. Arrays are:
d:[0]4]oof4]3]ocfoof mif[-[d]-[s[s[-]-]
s a b ¢ d e f s a b ¢ d e f

IADS — Lecture 16 — slide 16

Worked example - adding 5th vertex

~. A
L
U

Y
s —()

S ={s,d, c, a}, fringe vertices are now {b, e, f}.

» We know e and f have candidate paths (7t[-] = d) with values 11, 9.
> Fringe vertex b has a new candidate path value dla] + w(a,b) =4+3 =7,
same value as existing path via c.

= S« SU{b} with 7[b] — c/a. IADS — Lecture 16 — slide 17

Worked example - S ={s, d, c, a, b}

o

S ={s,d, c,a, b}. Arrays are:
d:[0]4]7[4]8]ccfoo] m:|-[d]c]s[s][-]-]
s a b ¢ d e f s a b ¢ d e f

IADS — Lecture 16 — slide 18

Worked example - adding 6th vertex

/@\5

7 ~ -
~. A
N

“

S ={s,d, c, a, b}, fringe vertices are now {e, f}.

» f has existing candidate path (7[f] = d) with value 9.
» ¢ has a new candidate path (7t[e] = b) with value
d[b] + w(b,e) =7+ 5 =12, worse than existing candidate path via d.

= S« SU{f} with nilf] « d. IADS — Lecture 16 — slide 19

Y
s —()

Worked example - S = {s,d, c, a, b, f}
3/@\

T\ o

/

8 4
Y
e-»@
S ={s,d,c,a, b, f}. Arrays are:
d:[0]4]7]4][8][9] m:[-[d[c[s]s[-][d]
s a b ¢ d e f s a b ¢ d e

IADS — Lecture 16 — slide 20

Worked example - adding last vertex

/@\5\
/(e)

3

/

/V

AR

-

o —O

S ={s,d,c,a,b,f}, fringe vertex set is just {e}.

» ¢e's best candidate path is with 7t[e] = d with value 11
= S « S U{e} with 7tle] « d.

IADS — Lecture 16 — slide 21

Example - final “shortest path tree” and arrays

/'@\5

o
N

3

“

Y
s —(r)
S ={s,d,c,a,b,f,e}, no fringe edges/vertices.
d:[0|4]7[4|3]11|9]| m:|[-[d]|c|s]|s]|d]|d]
s a b ¢ d e f s a b ¢ d e

IADS — Lecture 16 — slide 22

final “shortest path tree”

N
L/
@<

3

N

1

' —0©

Observe that the collection of edges contributing to all shortest paths forms a
“shortest path tree” (a directed arborescence out of the source vertex s)

IADS — Lecture 16 — slide 23

Simple Implementation of Dijkstra

Algorithm InitializeSingleSource(G, s)
1. for each vertex v € V[G]
2. do d[v] — >
3. m[v] « NIL

Algorithm DijkstraSimple(G, s)

InitializeSingleSource(G, s)
dls] <0, S « {s}
while V[G]\ S #) and there are fringe edges
min, < s, ming < o0, min, < NIL
do for ue S,v e VIGI\ S, (u,v) € E(G)
if dlu] + w(u,v) < ming
ming « d[ul + w(u,v), min, < u, min, « v

S « Su{min,},d[min,] < ming, 7t[min,] < min,

© o NGk W=

return d, 7t
IADS — Lecture 16 — slide 24

Recovering the shortest paths

(in a graph/digraph with non-negative weights)
In practice, we will want the short paths themselves, not just the values.

Some facts that help us:

» No shortest path from s to any v can contain a cycle.
why?: If a path p contains a cycle, cycle’s weight is > 0, we could delete it
to get another s — v with fewer edges, and distance no greater.

» Every shortest path has at most n — 1 edges.
why?: no cycles, so can visit any node at most once.

» If s = vy, v1,...,Vk is a shortest path to v, then every prefix
S = Vg, V1,...,V; is a shortest path to v;.
why?: If we had a shorter path for one of the v;, we could replace section
S = vg, V1,...,V; to get a shorter path for v too.

The third point allows us to use the 7t array to recursively build the short path
for any v € S (lookup 7t[v] to get last edge (7t[v], v), lookup 7t[mt[v]], ...)

IADS — Lecture 16 — slide 25

A more efficient implementation

Dijkstra is “all about” the ranking/management of the fringe
edges/vertices.

The DijkstraSimple implementation has in-efficiency, in that it
reconsiders/recalculates existing fringe edges at later steps.

Improvement: Eliminate “re-calculation” for fringe edges:

» Let d[v],7t[v] store the “shortest so far” d[-] + w(-, v) for every
current fringe vertex v.

> After a new change (S + S U{v*}), limit calculation to the new
fringe edges: consider the (v*, w) edges for w € V[G] \ (S U{v*})
and possibly update the d[w], 7t[w] entries.

This can reduce the work for adding 1 vertex to become O(n) (in fact
O(out(v*))) rather than potentially Q(m) (as with DijkstraSimple).
However, we need to be able to store the fringe vertices in a Data
Structure which will allow us to identify/access the optimum fringe
vertex quickly.

IADS — Lecture 16 — slide 26

Dijkstra’s Algorithm using a (Min) Heap

Will mankan o (‘/\'I"\ Heayp
Wil an ey fov eqoh
fringe vertex Cpurpte) . = o
G~d ke "Currek shorkesk pate value

» G as Adjacency list - can visit “outgoing edges from v" in O(out(v)).

» Maintain a (Min) Heap priority queue Q of current fringe vertices, with
their current shortest path value (so far) as key. (we will need to be able to
update/reduce keys, after a successful Relax operation).

» Q.extractMin() & “add the best fringe vertex v" to S.
IADS — Lecture 16 — slide 27

Implementation using (Min) Heap

Algorithm InitializeSingleSource(G, s)
1. for each vertex v € VI[G]
2. do d[v] —
3. 7tlv] « NIL

Algorithm Relax(G, (u, v))
1. if dlv] =0
2 then d[v] « d[u] + w(u, v)
3 7lv] ¢« u
4, Q.insertltem(d[v], v)
5. if(dlv] > d[u] + w(u, v))
6 then d[v] « d[u] + w(u, v)
7 7lv] «— u
8 Q.reduceKey(d[v], v)
IADS — Lecture 16 — slide 28

Implementation using (Min) Heap

k|

Edsger Dijkstra

Algorithm Dijkstra(G, s)

No a ks wbd

InitializeSingleSource(G, s)
Q.insertltem(0, s)
dls] 0
while —(Q.isEmpty())
do (d*, u) « Q.extractMin()
for x € Out(u)
Relax(G, (u, x))

IADS — Lecture 16 — slide 29

(Min) Heaps

In Lecture 11 we saw how we can use a Heap to implement a Priority Queue
with n items, so operations have the following worst-case running-times:

Q.isEmpty() ©(1)
Q.minElement() 0(1)
Q.extractMin() O(lg(n))
(
(

Q.insertltem(d,v) | O(lg(n))
Q.reduceKey(d',v) | O(lg(n))

Strictly speaking, we demonstrated this for a Max Heap - however, by exchang-
ing > and < we can transform a Max Heap implementation into a Min Heap
structure, same running-times.

updates: We can also add the operation Q.reduceKey(d’,v) (to replace v's
current key by a smaller d’) to operate in O(lg(n)) worst-case time.

» Use the “bubble up” of insertltem, but may start higher than a leaf.
> (we assume we have an index supporting jumps to v's cell of the Heap)

IADS — Lecture 16 — slide 30

vVvyYyYyy

Running-time analysis for (Heap) Dijkstra

InitializeSingleSource takes O(n) time at most.
lines 2.-3. take O(1).
Take an “aggregated” approach to bounding run-time of the while

A vertex v can be added to the Heap only once (need d[v] = co in Relax)
and hence, only removed once

= O(n.1g(n)) covers all the Q.extractMin() and Q.insertltem(d, v) calls.
Apart from the insertltem calls, a call to Relax takes
O(l) + TreduceKey(n) = O(l) + O(lg(n)) time.

We might call Relax at most twice for every edge e € E ... as we only call
Relax(G, (u, v)) immediately after an endpoint has joined S.

Hence total for all Relax calls is O(m + m-1g(n)) time.

Other work done by the while is at most O(n).
O((n+ m)lg(n)) time overall

IADS — Lecture 16 — slide 31

Reading

» CLRS, Ed 4: Sections 20.1 (graph rep.), Section 22.2 (shortest-path reps)
and Sections 22.3 for Dijkstra. Some proofs in 22.5.

» “Algorithms llluminated” by Roughgarden: Sections 9.1, 9.2, 9.4 and (for
the faster Heap implementation) 10.4, 10.5.
Our Heap version of Dijkstra’s Alg is most similar (but slightly different) to the
[CLRS] presentation.
IADS — Lecture 16 — slide 32

