
Introduction to Algorithms and Data Structures

Lecture 16: Dijkstra’s Algorithm (for shortest paths)

Mary Cryan

School of Informatics
University of Edinburgh

IADS – Lecture 16 – slide 1

Welcome back!

IADS – Lecture 16 – slide 2

Directed and Undirected Graphs

We return to the world of graphs and directed graphs.

I A graph is a mathematical structure consisting of a set of vertices and a
set of edges connecting the vertices.

Formally: G = (V ,E), where V is a set and E ⊆ V × V .

I G = (V ,E) undirected if for all v ,w ∈ V :

(v ,w) ∈ E ⇐⇒ (w , v) ∈ E .

Otherwise directed.

Directed ∼ arrows (one-way)
Undirected ∼ lines (two-way)

IADS – Lecture 16 – slide 3

Road Networks

The weighted case is a very natural graph model - eg, road network where
vertices represent intersections, edges represent road segments, and the weight
of an edge is the distance of that road segment.

IADS – Lecture 16 – slide 4

Shortest paths in graphs

In this lecture we will consider weighted graphs (and digraphs) G = (V ,E) where
there is a weight function w : E → R defining weights for all arcs/edges.

We are interested in evaluating the cost of shortest paths (from specific node u
to specific node v) in the given weighted graph.

We will focus on single-source shortest paths, where we want to find
the minimum path from node s to node v, for every v .

Input: Graph G = (V ,E),w : E → R+ a weighted graph/digraph (no negative
weights), s ∈ V a specific source vertex.

IADS – Lecture 16 – slide 5

Single-source shortest paths

unweighted graphs and digraphs

We can use breadth-first search to explore a graph G = (V ,E) from a
specific vertex s ∈ V . Θ(|V |+ |E |) running-time.

(in the unweighted case, the shortest path is the one with fewest edges)

weighted graphs and digraphs

I Dijkstra’s algorithm, will compute the single source shortest paths (and
their values) for any graph or directed graph without negative weights.

I Dijkstra’s Algorithm is a greedy algorithm.

I Makes use of a Priority Queue (as introduced at the end of L11 in s1).

I We will see that (with the use of a (Min) Heap to deliver the Priority
Queue), Dijkstra can achieve running-time O((|V |+ |E |) lg(|V |)), or
O((m + n) lg(n)).

IADS – Lecture 16 – slide 6

Dijkstra’s Algorithm

A Greedy algorithm which grows the set S of “shortest path solved” vertices.

I S has some vertices where shortest path from S is known (blue edges).

I S has some outgoing edges (from S to outside S) (fringe edges in purple)

(fringe vertices are those accessible by a fringe edge)

At each iteration, Dijkstra’s Algorithm will add the fringe vertex v ∈ V \ S with
the shortest candidate path into S .

IADS – Lecture 16 – slide 7

Dijkstra - how to select the next fringe vertex?

I We have some vertices already in S ({s, u, u ′} in picture).

We already know the optimum shortest path from s (d [v]) for every v ∈ S .

I We need to consider the fringe vertices (v , v ′, v ′′ in picture) and add the
one with shortest candidate path into S . For our picture . . .

v ’s candidate path is d [u ′] + w(u ′, v)

v ′ has two candidate paths: d [u] + w(u, v ′) and d [u ′] + w(u ′, v ′)

v ′′ has candidate path d [s] + w(s, v ′′) = w(s, v ′′) (as d [s] is 0)

IADS – Lecture 16 – slide 8

Dijkstra - rules for selecting next fringe vertex

Arrays: We use arrays d and π of length n = |V | each:

d [v] to (eventually) hold shortest-path distance dG (s, v) from s to v
π[v] to (eventually) be v ’s predecessor along that shortest path.

Initialisation:

d [v]← { 0 v = s∞ v ∈ V \ {s}.

We initialise predecessor array π by π[v]← nil for every v ∈ V .

Induction step: (while S still has fringe edges to V \ S), then for every fringe
vertex v ∈ V \ S , compute v ’s (current) shortest candidate path/predecessor

d [v] ← min
u∈S

{d [u] + w(u, v)}

π[v] ← argmin
u∈S

{d [u] + w(u, v)}.

I Let v∗ ∈ V \ S be the fringe vertex with minover all fringe verticesd [v].

I Update S ← S ∪ {v∗}, then d [v∗] and π[v∗] become fixed from now on.

Terminate when S no longer has fringe edges.
IADS – Lecture 16 – slide 9

Worked example - initialisation

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

To start we have S = {s}, and fringe vertices are {a, c , d}. Arrays are:

d : 0 ∞ ∞ ∞ ∞ ∞ ∞
s a b c d e f

π : - - - - - - -
s a b c d e f

IADS – Lecture 16 – slide 10

Worked example - adding 2nd vertex

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

Fringe vertices are {a, c , d}

I a has candidate path value d [s] + w(s, a) = 0 + 5 = 5
I c has candidate path value d [s] + w(s, c) = 0 + 4 = 4
I d has candidate path value d [s] + w(s, d) = 0 + 3 = 3 . . . ⇒ S ← S ∪ {d}

IADS – Lecture 16 – slide 11

Worked example - S = {s, d }

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d}, fringe vertices are now {a, c , e, f }. Arrays are:

d : 0 ∞ ∞ ∞ 3 ∞ ∞
s a b c d e f

π : - - - - s - -
s a b c d e f

IADS – Lecture 16 – slide 12

Worked example - adding 3rd vertex

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d}, fringe vertices are now {a, c , e, f }.

I a has extra candidate path with π[a] = d , better value d [d] +w(d , a) = 4.
I c ’s existing candidate path, still available, has value 4.
I New fringe vertices e, f have paths (π[·] = d) with values 11, 9 resp.⇒ EITHER S ← S ∪ {c} OR S ← S ∪ {a} IADS – Lecture 16 – slide 13

Worked example - S = {s, d , c}

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d , c}. Arrays are:

d : 0 ∞ ∞ 4 3 ∞ ∞
s a b c d e f

π : - - - s s - -
s a b c d e f

IADS – Lecture 16 – slide 14

Worked example - adding 4th vertex

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d , c}, fringe vertices are now {a, b, e, f }.

I We know a has candidate path value 4 (via d), e value 11, f ’s value 9.
I New fringe vertex b has candidate path value d [c] + w(c , b) = 4 + 3 = 7
I a has an extra candidate path with value d [c] + w(c , a) = 4 + 5 = 9 > 5
. . . ⇒ S ← S ∪ {a} with π[a]← d . IADS – Lecture 16 – slide 15

Worked example - S = {s, d , c , a}

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d , c , a}. Arrays are:

d : 0 4 ∞ 4 3 ∞ ∞
s a b c d e f

π : - d - s s - -
s a b c d e f

IADS – Lecture 16 – slide 16

Worked example - adding 5th vertex

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d , c , a}, fringe vertices are now {b, e, f }.

I We know e and f have candidate paths (π[·] = d) with values 11, 9.
I Fringe vertex b has a new candidate path value d [a] +w(a, b) = 4 + 3 = 7,

same value as existing path via c .⇒ S ← S ∪ {b} with π[b]← c/a. IADS – Lecture 16 – slide 17

Worked example - S = {s, d , c , a, b}

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d , c , a, b}. Arrays are:

d : 0 4 7 4 3 ∞ ∞
s a b c d e f

π : - d c s s - -
s a b c d e f

IADS – Lecture 16 – slide 18

Worked example - adding 6th vertex

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d , c , a, b}, fringe vertices are now {e, f }.

I f has existing candidate path (π[f] = d) with value 9.
I e has a new candidate path (π[e] = b) with value

d [b] + w(b, e) = 7 + 5 = 12, worse than existing candidate path via d .⇒ S ← S ∪ {f } with π[f]← d . IADS – Lecture 16 – slide 19

Worked example - S = {s, d , c , a, b, f }

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d , c , a, b, f }. Arrays are:

d : 0 4 7 4 3 ∞ 9
s a b c d e f

π : - d c s s - d
s a b c d e f

IADS – Lecture 16 – slide 20

Worked example - adding last vertex

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d , c , a, b, f }, fringe vertex set is just {e}.

I e’s best candidate path is with π[e] = d with value 11⇒ S ← S ∪ {e} with π[e]← d .

IADS – Lecture 16 – slide 21

Example - final “shortest path tree” and arrays

s

a

b

c

d

e

f

5

3

4

5

3

3

3

5

8

6

1

3

4

S = {s, d , c , a, b, f , e}, no fringe edges/vertices.

d : 0 4 7 4 3 11 9
s a b c d e f

π : - d c s s d d
s a b c d e f

IADS – Lecture 16 – slide 22

final “shortest path tree”

s

a

b

c

d

e

f

4

3

3

8

6

1

Observe that the collection of edges contributing to all shortest paths forms a
“shortest path tree” (a directed arborescence out of the source vertex s)

IADS – Lecture 16 – slide 23

Simple Implementation of Dijkstra

Algorithm InitializeSingleSource(G , s)

1. for each vertex v ∈ V [G]

2. do d [v]←∞
3. π[v]← nil

Algorithm DijkstraSimple(G , s)

1. InitializeSingleSource(G , s)

2. d [s]← 0, S ← {s}

3. while V [G] \ S 6= ∅ and there are fringe edges

4. minu ← s,mind ←∞,minv ← nil

5. do for u ∈ S , v ∈ V [G] \ S , (u, v) ∈ E (G)

6. if d [u] + w(u, v) < mind

7. mind ← d [u] + w(u, v), minu ← u, minv ← v

8. S ← S ∪ {minv }, d [minv]← mind , π[minv]← minu

9. return d , π

IADS – Lecture 16 – slide 24

Recovering the shortest paths

(in a graph/digraph with non-negative weights)
In practice, we will want the short paths themselves, not just the values.

Some facts that help us:

I No shortest path from s to any v can contain a cycle.
why?: If a path p contains a cycle, cycle’s weight is ≥ 0, we could delete it
to get another s → v with fewer edges, and distance no greater.

I Every shortest path has at most n − 1 edges.
why?: no cycles, so can visit any node at most once.

I If s = v0, v1, . . . , vk is a shortest path to vk , then every prefix
s = v0, v1, . . . , vi is a shortest path to vi .

why?: If we had a shorter path for one of the vi , we could replace section
s = v0, v1, . . . , vi to get a shorter path for vk too.

The third point allows us to use the π array to recursively build the short path
for any v ∈ S (lookup π[v] to get last edge (π[v], v), lookup π[π[v]], . . .)

IADS – Lecture 16 – slide 25

A more efficient implementation

I Dijkstra is “all about” the ranking/management of the fringe
edges/vertices.

I The DijkstraSimple implementation has in-efficiency, in that it
reconsiders/recalculates existing fringe edges at later steps.

I Improvement: Eliminate “re-calculation” for fringe edges:

I Let d [v], π[v] store the “shortest so far” d [·] + w(·, v) for every
current fringe vertex v .

I After a new change (S ← S ∪ {v∗}), limit calculation to the new
fringe edges: consider the (v∗,w) edges for w ∈ V [G] \ (S ∪ {v∗})
and possibly update the d [w], π[w] entries.

This can reduce the work for adding 1 vertex to become O(n) (in fact
O(out(v∗))) rather than potentially Ω(m) (as with DijkstraSimple).
However, we need to be able to store the fringe vertices in a Data
Structure which will allow us to identify/access the optimum fringe
vertex quickly.

IADS – Lecture 16 – slide 26

Dijkstra’s Algorithm using a (Min) Heap

I G as Adjacency list - can visit “outgoing edges from v” in O(out(v)).

I Maintain a (Min) Heap priority queue Q of current fringe vertices, with
their current shortest path value (so far) as key. (we will need to be able to
update/reduce keys, after a successful Relax operation).

I Q.extractMin() ⇔ “add the best fringe vertex v” to S .

IADS – Lecture 16 – slide 27

Implementation using (Min) Heap

Algorithm InitializeSingleSource(G , s)

1. for each vertex v ∈ V [G]

2. do d [v]←∞
3. π[v]← nil

Algorithm Relax(G , (u, v))

1. if d [v] =∞
2. then d [v]← d [u] + w(u, v)

3. π[v]← u

4. Q.insertItem(d [v], v)

5. if(d [v] > d [u] + w(u, v))

6. then d [v]← d [u] + w(u, v)

7. π[v]← u

8. Q.reduceKey(d [v], v)

IADS – Lecture 16 – slide 28

Implementation using (Min) Heap

Edsger Dijkstra

Algorithm Dijkstra(G , s)

1. InitializeSingleSource(G , s)

2. Q.insertItem(0, s)

3. d [s]← 0

4. while ¬(Q.isEmpty())

5. do (d∗, u)← Q.extractMin()

6. for x ∈ Out(u)

7. Relax(G , (u, x))

IADS – Lecture 16 – slide 29

(Min) Heaps

In Lecture 11 we saw how we can use a Heap to implement a Priority Queue
with n items, so operations have the following worst-case running-times:

Q.isEmpty() Θ(1)
Q.minElement() Θ(1)
Q.extractMin() O(lg(n))
Q.insertItem(d,v) O(lg(n))
Q.reduceKey(d’,v) O(lg(n))

Strictly speaking, we demonstrated this for a Max Heap - however, by exchang-
ing > and < we can transform a Max Heap implementation into a Min Heap
structure, same running-times.

updates: We can also add the operation Q.reduceKey(d ′, v) (to replace v ’s
current key by a smaller d ′) to operate in O(lg(n)) worst-case time.

I Use the “bubble up” of insertItem, but may start higher than a leaf.
I (we assume we have an index supporting jumps to v ’s cell of the Heap)

IADS – Lecture 16 – slide 30

Running-time analysis for (Heap) Dijkstra

I InitializeSingleSource takes O(n) time at most.

I lines 2.-3. take O(1).

I Take an “aggregated” approach to bounding run-time of the while

I A vertex v can be added to the Heap only once (need d [v] =∞ in Relax)
and hence, only removed once⇒ O(n. lg(n)) covers all the Q.extractMin() and Q.insertItem(d , v) calls.

I Apart from the insertItem calls, a call to Relax takes

O(1) + TreduceKey(n) = O(1) + O(lg(n)) time.

I We might call Relax at most twice for every edge e ∈ E . . . as we only call
Relax(G , (u, v)) immediately after an endpoint has joined S .

Hence total for all Relax calls is O(m +m · lg(n)) time.

I Other work done by the while is at most O(n).

O((n +m) lg(n)) time overall

IADS – Lecture 16 – slide 31

Reading

I CLRS, Ed 4: Sections 20.1 (graph rep.), Section 22.2 (shortest-path reps)
and Sections 22.3 for Dijkstra. Some proofs in 22.5.

I “Algorithms Illuminated” by Roughgarden: Sections 9.1, 9.2, 9.4 and (for
the faster Heap implementation) 10.4, 10.5.

Our Heap version of Dijkstra’s Alg is most similar (but slightly different) to the
[CLRS] presentation.

IADS – Lecture 16 – slide 32

