
Introduction to Algorithms and Data Structures

Lecture 18: Introduction to Dynamic Programming

Mary Cryan

School of Informatics
University of Edinburgh

IADS – Lecture 18 – slide 1

Divide and Conquer

The Divide and Conquer technique is when we design an algorithm to solve a
problem by taking an instance (or input) I (of size n), then

1. Doing some preprocessing with I to construct some number of smaller
sub-problems on smaller instances I1, . . . , Ik ;

2. Making k recursive calls to compute the answer for the sub-problems;

3. Take the answers from 2. and do some computation to get the overall
answer for the original input I .

Details (of the number of subproblems k , how to combine answers etc) will vary
from problem to problem.

In some cases, Divide-and-Conquer can directly give an efficient (polynomial-time)
algorithm - for example Mergesort, Quicksort.

Master theorem often features in the analysis.

But the recursive method is not always efficient.

IADS – Lecture 18 – slide 2

Fibonacci numbers - a toy example

The Fibonacci numbers are defined as

F0 = 0,

F1 = 1,

Fn = Fn−1 + Fn−2 (for n ≥ 2).

There is an immediate recursive algorithm:

Algorithm Rec-Fib(n)

1. if n = 0 then

2. return 0

3. else if n = 1 then

4. return 1

5. else

6. return Rec-Fib(n − 1)+Rec-Fib(n − 2)

Ridiculously slow: exponentially many repeated computations of Rec-Fib(j)
for small values of j .

IADS – Lecture 18 – slide 3

Fibonacci numbers (cont’d)

Why is the recursive solution so slow?
Running time T (n) satisfies

T (n) = T (n − 1) + T (n − 2) +Θ(1) ≥ Fn ∼ (1.6)n.

Fn

Fn−1 Fn−2

Fn−3 Fn−4Fn−2 Fn−3

Fn−4 Fn−4 Fn−5 Fn−4 Fn−5Fn−3

(The 1.6 comes from the golden ratio 1+
√
5

2 . It is a bit easier to prove
Fn ≥ 1

2 (3/2)n for n ≥ 8.)

IADS – Lecture 18 – slide 4

Fibonacci numbers (cont’d)

Dynamic Programming Approach

Algorithm Dyn-Fib(n)

1. F [0] = 0

2. F [1] = 1

3. for i ← 2 to n do

4. F [i]← F [i − 1] + F [i − 2]

5. return F [n]

Build “from the bottom up”.
We are “turning recursion upside down”.

Running Time is Θ(n)
Very fast in practice - just need an array (of linear size) to store the F(i) values
(in fact don’t even need that array . . .)

IADS – Lecture 18 – slide 5

Implementing in

The plain recursive implementation: SLOW!

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n-1)+fib(n-2)

Dynamic programming implementation with a 1-dimensional array

def fibDP(n):

F = [0]*(n+1)

F[1] = 1

The range will be empty if n is 0 or 1

for i in range(n-1):

F[i+2] = F[i+1]+F[i]

return F[n]

Test these on the value 44 (say) to see the difference.

IADS – Lecture 18 – slide 6

Decorators in

Can get the benefit of the Dynamic Programming via ad-hoc memoization.

The plain recursive implementation:

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n-1)+fib(n-2)

def memoize(f):

memo = {}

def check(s):

if s not in memo:

memo[s]=f(s)

return memo[s]

return check

now make ’memoize’ a Decorator for ’fib’

fib = memoize(fib)
IADS – Lecture 18 – slide 7

The coin-changing problem (re-visited)

The coin changing problem is the problem, given an input value v
(v ∈ N0) of calculating a collection of coins (of minimum cardinality)
that will sum to v.

This is an optimization problem, as we want a solution with as few individual
coins as possible (we want to minimize the number of coins handed back).

Want to do this for arbitrary systems of coin denominations.

IADS – Lecture 18 – slide 8

The coin-changing problem

Given: A value v ∈ N0, plus a sequence of coin values c1, c2, . . . , ck ∈ N0

(these representing the denominations of the relevant system).

Output: A multiset S of coins whose values sum to v , whose cardinality
(size) of S is the minimum possible for v in this coin system.

Return solution as an array S of length k with S [i] being the
number of coins of value ci+1 for this optimal solution, for each
0 ≤ i ≤ k − 1.

We saw in lecture 17 that the natural greedy heuristic is not guaranteed to return
an optimum set of coins (at least, not for the general case).

We will now develop a recurrence for the (optimal) solution.

We assume some solution definitely exists
(assuming c1 = 1 is enough to ensure this)

IADS – Lecture 18 – slide 9

The coin-changing problem

Let C (v) denote the number of coins in an optimal solution for value v ∈ N0

(with respect to denominations c1, c2, . . . , ck ∈ N0).

Observation:

Suppose we have an optimal solution S for our given value v (with
respect to our coin values c1, . . . , ck), with optimal count C (v).

Then there is some initial coin i (maybe, take the lowest one in the
solution) which contributes to this solution.

Then C (v) = 1 + C (v − ci) for this coin.

We will not know which coin ci is definitely in the optimal solution.

However we can write

C (v) =

{
1 v = ci for some 1 ≤ i ≤ k

1 +min{C (v − ci) : 1 ≤ i ≤ k , ci < v } otherwise

IADS – Lecture 18 – slide 10

coin-changing: the algorithm

The recurrence helps me describe the solution (for v) in terms of other
values, but that only helps if I already know the value of C (v − ci) for
the various ci . Would need to have precomputed those.

Solution:

I We will expand our Objective to computing C (w) for every w from 1 to v .

I We will have an array C of length v + 1, and C [w] will be computed as the
“minimum number of coins to make w” for each w .

I We will compute the solution for small values of w first.

I It will help to have an extra array P to store the “coin used to get the best
answer” for each w (to know how to reconstruct).

I At the end we will also use the arrays C and P to build the list of coin
values for v (smaller array S of length k).

IADS – Lecture 18 – slide 11

coin-changing by dynamic programming: example

Consider the case of coin values 1, 5, 7, and the change-value v = 18.

IADS – Lecture 18 – slide 12

Dynamic programming algorithm

Algorithm Dyn-Coins(v ; c1, . . . , ck)

1. initialise array c of length k to hold the ci values

2. initialise array S of length k (to 0s)

3. initialise arrays C ,P of length v + 1 (to ∞)

4. C [0]← 0, C [1]← 1, P[1]← 0 //Assume c1 = c [0] = 1

5. for w ← 2 to v //We work “bottom-up”

6. for i = 0 to k − 1 //We try all coin values

7. if (c [i] ≤ w) and (C [w − c [i]] + 1 < C [w])

8. C [w]← 1 + C [w − c [i]]

9. P[w]← i

10. while v > 0 //Now we work back to build S

11. i ← P[v]

12. S [i]← S [i] + 1; v ← v − c [i]

13. return C [v] “is the number of coins. The solution is in array S”.

IADS – Lecture 18 – slide 13

Other options?

Recursive implementation:

I A straightforward recursive implementation will show repeated
subproblems, as in the case of Fibonacci (though it is less immediate)

I Even with some simple optimizations (like putting an order on considering
the “next coin”), still we will get repetitions.

I So there is redundancy in a näive implementation of the recurrence on
slide 10.

A “greedy” algorithm:

I The greedy algorithm always chooses the coin of max-value (less than
remaining value)

I A very natural heuristic which will work on many coin systems.

I This is not guaranteed to be optimal for all systems - try the system with
coin values 1, 5, 7 for the value v = 18

IADS – Lecture 18 – slide 14

Dynamic Programming principles (in general)

4 (related) features we need in order to design an (efficient) Dynamic Program-
ming algorithm:

(dp1) Need is to see that computing the optimum solution for our
original instance can be achieved by finding solutions to (smaller)
problems of the same type, and combining them.

(Sometimes we will have need to generalise the way we define
the problem for this; eg, with coin changing, we think about
computing the best solution for every value from 1 to v).

(dp2) Closely related to (dp1), we need the solution to an instance of
the problem to be expressible in terms of a recurrence, where the
right-hand side contains one or more recursive calls for smaller
instances of the same problem.

(for coin-changing, this was the recurrence on slide 11)

IADS – Lecture 18 – slide 15

Dynamic Programming principles (in general)

(dp3) We need to be able to organise storage for the results for all
possible subproblems (identified in dp1/dp2) which will be solved.

It should be possible to store the subproblem results in an table
with meaningful indexing - hopefully, 1-dimensional or
2-dimensional. (there are some problems which rely-on
3-dimensional (or greater) tables. That’s ok, as long as the space
is “polynomially bounded”).

(for coin-changing, we use 1-dim arrays of length w and k)

(dp4) We need an algorithm to control the order in which subproblems
are solved (and results stored in the appropriate cell of the table).
This must be done so that all of the subproblems appearing on
the right-hand side of the recurrence must be computed and
in-the-table in advance of computing the left-hand side.

(for coin-changing, all of the sub-problems on the rhs of the
recurrence have w < v , so the solution is already pre-computed)

IADS – Lecture 18 – slide 16

Reading and Working

Reading: Neither the [CLRS] nor the [Roughgarden] textbook cover the same
Dynamic programming problems as us.

I Section 16.4 of “Algorithms Illuminated” by Tom Roughgarden discusses
the Principles of Dynamic programming in a similar way to us.

I Section 6.2 of Kleinberg+Tardos has a similar discussion of general
Dynamic Programming principles.

I Dynamic Programming Algorithm for coin-changing is due to J.W. Wright,
“The Change Making Problem”, Journal of the ACM, 1975.
https://dl.acm.org/doi/10.1145/321864.321874

IADS – Lecture 18 – slide 17

https://dl.acm.org/doi/10.1145/321864.321874

