
Introduction to Algorithms and Data Structures

Lecture 20: “Seam Carving” and Edit distance (via
Dynamic Programming)

Mary Cryan

School of Informatics
University of Edinburgh

IADS – Lecture 20 – slide 1

Seam Carving

We need to fit images into new dimensions (relevant for tablet/mobile layouts).

Näıve approaches to adapting to varying dimensions include cropping and
scaling. Both have their flaws - see video by Shai Avidan and Ariel Shamir:
https://www.youtube.com/watch?v=6NcIJXTlugc&feature=emb_logo

A better, more flexible, approach is to search for seams in the image, a seam
being a connected sequence of pixels running from top-to-bottom (vertical) or
from left-to-right (horizontal).

I More general than deleting a column.

I Seams can be deleted (or duplicated) and the rows and columns of the
altered image will have uniform lengths 1 less (or more) than before.

I For re-sizing images, we will want to find seams of low-energy (where there
is little difference between the seam pixels and their surrounding pixels).

IADS – Lecture 20 – slide 2

https://www.youtube.com/watch?v=6NcIJXTlugc&feature=emb_logo

Seam Carving

We are given an image I : [m] × [n] where each pixel is a colour (maybe RGB).
Our dimensions are m × n but we want to fit to different dimensions m ′ × n ′.

Definition
In a image I of dimensions m × n, we define a vertical seam to be any sequence

s = j1, . . . , jm ∈ [n]

such that for every i ∈ [m] \ {1}, we have |ji − ji−1| ≤ 1 and 2 ≤ ji ≤ n − 1
(don’t touch left/right sides).
A horizontal seam is any sequence

s = i1, . . . , in ∈ [m]

such that for every j ∈ [n] \ {1}, we have |ij − ij−1| ≤ 1 and 2 ≤ ij ≤ m − 1.

(recall [k] is the set of values {1, . . . , k})

IADS – Lecture 20 – slide 3

Seams and Energy

In building a (vertical) seam we are allowed to move (straight) down, 1-pixel left,
or 1-pixel right.

* F
C

tr C I-b
C’

-

C
‘

(4
r
r
t

ft
n

0

p
a’

7I
•1

P

1,
-
p
L
Y
)

Cr— (
t(
t
r

0 C

C’
‘N

“
0
(
3

r ‘
-
f
t

L
s
3

1-
’,
>

‘
0

F

C C) 7’

C—
’

it) P
C
)

1
,

Th -S
I

ft

We need to evaluate the energy of a pixel, as we prefer low-energy seams.

We assume some energy function e = eI applied to pixels of that image.
Then

e(s) =def

{ ∑m
i=1 eI(i , ji) s is a vertical seam∑n
j=1 eI(ij , j) s is a horizontal seam

IADS – Lecture 20 – slide 4

Energy functions

Many options for (pixel) energy function, often a (local) gradient score.

I L1 gradient scoring (for pixel (i , j)) can be written as

eI(i , j) =def

∣∣ ∂
∂x

I
∣∣
i,j

+
∣∣ ∂
∂y

I
∣∣
i,j
.

I ∂
∂x ,

∂
∂y are defined in the image processing context:

I For example the Sobel operators can be used to calculate ∂
∂x and ∂

∂y :−1 0 +1
−2 0 +2
−1 0 +1

 −1 −2 −1
0 0 0
+1 +2 +1


I The first (vertical) would calculate ∂

∂x |i,j as
(Ii−1,j+1 − Ii−1,j−1) + 2(Ii,j+1 − Ii,j−1) + (Ii+1,j+1 − Ii+1,j−1).

I A colour image will have 3 color channels, so 3 ∂
∂x and 3 ∂

∂y scores to sum.

IADS – Lecture 20 – slide 5

Computing an optimal seam

We assume we are looking for a vertical seam (without loss of generality).
Take a recursive view and understand the optimal seam in terms of (slightly)
shorter seams:

* F
C

tr C I-b
C’

-

C
‘

(4
r
r
t

ft
n

0

p
a’

7I
•1

P

1,
-
p
L
Y
)

Cr— (
t(
t
r

0 C

C’
‘N

“
0
(
3

r ‘
-
f
t

L
s
3

1-
’,
>

‘
0

F

C C) 7’

C—
’

it) P
C
)

1
,

Th -S
I

ft
IADS – Lecture 20 – slide 6

Recurrence for optimal (vertical) seam

Assume that we have precomputed eI(i , j) for every pixel 1 ≤ i ≤ m, every
1 ≤ j ≤ n (Θ(1) time for each (i , j)).

(eI(i , j) slightly different for top/bottom rows)

Definition
For every i , j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, we define optI(i , j) to be the cost of the
minimum-cost vertical seam from (somewhere in) row 1 to pixel (i , j), where
cost is scored as at the end of slide 4.

We have the following recurrence:

optI(i , j) = eI(i , j) +


0 if i = 1

min{optI(i − 1, j − 1),
optI(i − 1, j), if i > 1
optI(i − 1, j + 1)}

(we will set eI(i , j)←∞ if j = 1 or n)

IADS – Lecture 20 – slide 7

Dynamic programming implementation

We will need a table/array of size m · n, let the table be opt.
(I assume indexing starts at 1 for this algorithm)

I Entry opt[i , j] will store the value of optI(i , j) (when we have computed it).

I We will need to have the local eI(i , j) energy values pre-computed (for
each 1 ≤ i ≤ m, 1 ≤ j ≤ n) and stored in a table e (of dimensions m × n).

We will set e[i , 1]←∞, e[i , n]←∞ for all i ∈ [m] to make sure the seam
avoids the sides.

I For image processing applications we definitely need to know the pixel
sequence for the actual seam of optimal score.

Define another table/array p of dimensions m × n to hold −1, 0, 1 values
(indicating whether ji was ji−1 − 1, ji−1, ji−1 + 1 for the good seam).

IADS – Lecture 20 – slide 8

Dynamic programming implementation
Algorithm Vertical-Seam(I,m, n)

1. for j ← 1 to n

2. for i ← 1 to m

3. e[i , j]← “compute eI(i , j)” //Θ(1) time

4. opt[1, j]← e[1, j], p[1, j]← 0 //Base case

5. for i ← 1 to m

6. for j ← 1 to n

7. opt[i , j]← opt[i − 1, j], p[i , j]← 0 //default case

8. if opt[i − 1, j − 1] < opt[i , j] then

9. opt[i , j]← opt[i − 1, j − 1], p[i , j]← −1

10. if opt[i − 1, j + 1] < opt[i , j] then

11. opt[i , j]← opt[i − 1, j + 1], p[i , j]← +1

12. opt[i , j]← opt[i , j] + e[i , j] //Always add e[i , j]

13. j∗ ← 2

14. for j ← 1 to n

15. if opt[m, j] < opt[m, j∗] then j∗ ← j

16. Print(“Best vertical seam ends at cell (m, j∗)”).

IADS – Lecture 20 – slide 9

Wrapping up

I After the algorithm has terminated, we find the optimal vertical seam by
searching row m for the minimum opt[m, j] value (one final loop).

I The double-loop between lines 5-12 does the main work, computing the
opt values using the recurrence. There are m · n iterations of lines 7-12,
and we can check that for a specific (i , j), lines 7-12 take O(1) time. So
the algorithm has worst-case running-time O(mn).

(ok, should also say lines 1-4 take O(mn) and lines 13-16 take O(n))

I The values in the p array make it very easy to reconstruct the actual
sequence of pixels forming the seam (even easier than edit distance, etc).

I We specify how to compute e[i , j] as the specific energy function can vary
(see Avidan-Shamir paper). These are functions of local (to (i , j)) pixels
and hence will always be computable in O(1)-time (per (i , j) entry).

As discussed in the video, the seam will either be deleted (if we are aiming to
reduce the width) or alternatively duplicated (if aiming to increase width).
There is a similar algorithm for Horizontal-Seam.

IADS – Lecture 20 – slide 10

Edit distance

Our setting is strings over some input alphabet. We want to measure the edit
distance between two given strings s, t over that alphabet.

We have three operations on strings - insertion, deletion, and substitution.

Examples:

I DNA or RNA strings over their 4-character alphabet: for example,
”AATCCGCTAG” versus ”AAACCCTTAG”.

I Words from a natural language - for example,“kitten” versus “sitting”.

k i t t e n -
s i t t i n g

(3 operations: 2 “substitutions” and 1 “insertion”)

IADS – Lecture 20 – slide 11

Sequence Alignment

We often talk about possible alignments of two (or more) sequences. For
example, here are two competing alignments for a given pair of DNA sequences:

A C C G G T A T C C T A G G A C
A C C T A T C T - - T A G G A C

A C C G G T A T C C T A G G A C
A C C - - T A T C T T A G G A C

An alignment of two sequences s ∈ Σm, t ∈ Σn is any padding (with some −
insertions) s ′ of s, and t ′ of t such that

|s ′| = |t ′|

(s ′i 6= −)∨ (t ′i 6= −) for all 1 ≤ i ≤ |s ′|

The score of an aligment is the total number of insertions (s ′i ∈ Σ with t ′i = −),
deletions (s ′i = − with t ′i ∈ Σ) and substitutions (s ′i 6= t ′i , s

′
i ∈ Σ, t ′i ∈ Σ).

IADS – Lecture 20 – slide 12

Edit distance

The edit distance d(s, t) between two strings s, t ∈ Σ∗ is the minimum number
of operations possible for an alignment of those strings.

We start with strings over the alphabet Σ.
How to align these? We don’t know.

But we do know there are only 3 ways the final column can be arranged!

And the “best possible” for each of these 3 possibilities is another “edit distance”
problem for an input that is slightly smaller.

IADS – Lecture 20 – slide 13

Edit distance

We get a natural recurrence for the edit distance for s = s[1 . . .m], t = t[1 . . . n]:

d(s[1 . . .m], t[1 . . . n]) =



m if n = 0

n if m = 0

d(s[1 . . .m − 1], t[1 . . . n − 1]) if sm = tn

1 +min{d(s[1 . . .m − 1], t[1 . . . n − 1])
d(s[1 . . .m − 1], t[1 . . . n]) if sm 6= tn
d(s[1 . . .m], t[1 . . . n − 1])}

Justification?
Whatever the best alignment is, its right column must either be a substitution,
or a deletion, or an insertion.

IADS – Lecture 20 – slide 14

A recursive implementation?

I
4

•

c
’>

iç-
’

L
n

i
.

7
?-c

m

3
1

I
•

•

t
t’

t

4.

ft

F
-C

’
•

-

@
4

t
t

t

—
p

p

*

Recursion tree is exponential in size . . . however there are at most m · n
sub-problems that can arise! So we are in a situation where DP can be exploited

IADS – Lecture 20 – slide 15

Dynamic programming implementation

We will need a table/array of size (m + 1) · (n + 1), let the table be d .

I Entry d [i , j] is intended to store the value of d(s[1 . . . i]), t[1 . . . j]) (when
we have computed it).

I We need to fill the table in a careful order - need to be sure that
d [i − 1, j − 1], d [i − 1, j] and d [i , j − 1] have already been computed before
we exploit the recurrence to compute d [i , j].

We will also keep a table/array called a which will store values 0, 1, 2, 3 to mark
whether the optimum for s[1 . . . i], t[1 . . . j] ended in a match (0), a substitution
(1), an insertion (2) or a deletion (3).

The a table will help us reconstruct the actual (best) alignment that achieves
the edit distance.

(the 0/1/2/3 are just quaternary “flags” and their values are not significant)

IADS – Lecture 20 – slide 16

Dynamic programming implementation

Algorithm Edit-Distance(s[1 . . .m], t[1 . . . n])

1. for i ← 0 to m

2. d [i , 0]← i , a[i , 0]← 3

3. for j ← 0 to n

4. d [0, j]← j , a[0, j]← 2

5. for i ← 1 to m do

6. for j ← 1 to n do

7. if si = tj then

8. d [i , j]← d [i − 1, j − 1]

9. a[i , j]← 0

10. else

11. d [i , j]← 1 +min{d [i , j − 1], d [i − 1, j], d [i − 1, j − 1]}

12. if d [i , j] = d [i − 1, j − 1] + 1 then a[i , j]← 1

13. else if d [i , j] = d [i , j − 1] + 1 then a[i , j]← 2

14. else a[i , j]← 3

IADS – Lecture 20 – slide 17

Reconstructing the best alignment

We use the information in the a table to fill two arrays b, c .

I b will hold the padded version of s (the s ′), in reverse

I c will hold the padded version of t (the t ′), in reverse

I we will build b, c by “working-back” through the table a (having started at
a[m, n] (i ← m, j ← n).

I At each step, we will check whether a[i , j] is either

0/1 In this case we insert character si into b, and character tj into c , then
decrement both i and j

2 In this case we insert character ’−’ into b, and character tj into c ,
then decrement j (but not i)

3 In this case we insert character si into b, and character ’−’ into c ,
then decrement i (but not j)

I At some point either i or j will hit 0, then we need to “finish off” b and c
with a “run of insertions” or a “run of deletions”.

I This results with the exact alignment stored in b and c , in reverse order.
We then can print out in reverse.

IADS – Lecture 20 – slide 18

Running time

It is not too hard to show that the running time for Edit-Distance is the same as
the space of its primary tables, ie, Θ(mn).

IADS – Lecture 20 – slide 19

Reading Materials

Seam Carving:

I “Seam-Carving for Content-Aware Image Resizing” (clickable). I have used
slightly different notation.

I There are many Seam-Carving implementations in Python available on the
Internet, worth Googling them and taking a look. They are usually using
numpy for file i/o and other functionality, plus some image processing
resource too.

Edit Distance: None of our texts cover edit distance in exactly the way we have
done - however, each of them has a section on sequence alignment:

[KT] Chapter 6.6

[CLRS] 14.4

[Roughgarden] 17.1

IADS – Lecture 20 – slide 20

http://www.eng.tau.ac.il/~avidan/papers/imretFinal.pdf

