
Introduction to Algorithms and Data Structures

Lecture 21: Probabilistic FSMs and the Viterbi
Algorithm

Mary Cryan

School of Informatics
University of Edinburgh

IADS – Lecture 21 – slide 1

Today’s lecture

Two aims for today:

I To remind ourselves about Finite State Machines, and to introduce
Probabilistic FSMs.

I To give a dynamic programming algorithm (the Viterbi algorithm) which
computes the most likely route through a probabilistic FSM/HMM, for a
given output string.

We will be working with transducer-like FSMs, where the FSM outputs a
character or signal at every state (according to some probability).

IADS – Lecture 21 – slide 2

Finite State Machines

In Inf1 we covered (deterministic) Finite State Machines, where we have an
alphabet Σ, a set of states Q, a distinguished start state q0, and subset F ⊆ Q of
accepting states, and a transition function δ : Q×Σ→ Q. For any (deterministic)
FSM M = 〈Q, Σ, q0,F , δ〉, we can test a string s ∈ Σ∗ against the FSM:

I Each string s ∈ Σ∗ has at most one computation path.

The computation is accepting if and only if it ends in a state from F .

I If the computation for s gets stuck at some intermediate state on a
deterministic FSM (no outgoing transition to consume the next character),
then s is rejected.

I The language accepted by M is denoted L(M).

A language L that has some FSM that recognises (exactly) L is called a
regular language.

A non-deterministic FSM is a FSM where we have a transition relation
∆ : Q × Σ× Q (so “∆(q, a)” may be a subset of Q rather than a single state).

IADS – Lecture 21 – slide 3

Example FSM

The letters on the transitions/arrows are used to direct the path of a test string s
(“next character” read from s gets matched to arrow with that label).

IADS – Lecture 21 – slide 4

Example FSM

Testing the string s = abcb has a computation path ending at a reject state (the
accept states are the double-circles). So abcb does not belong to the language
of this FSM.

IADS – Lecture 21 – slide 5

Probabilistic Finite State Machines

A Probabilistic FSM is a finite-state machine of the form M = 〈Q, Σ, q0,F , δ〉
with ∆ ⊆ (Q × Σ × Q), together with a probability label pq,a,q ′ ∈ [0, 1] for
every (q, a, q ′) ∈ ∆ such that for every q ∈ Q, a ∈ Σ, we have∑

q ′∈Q,(q,a,q ′)∈∆

pq,a,q ′ = 1.

We are no longer “free” to choose our path like in non-deterministic FSMs, now
there are probabilities of taking particular paths.

Strings are no longer in/out of the language, a string s ∈ Σ∗ has a specific
probability of being accepted.

“between deterministic and non-deterministic?”

(in terms of choosing a computational path)

IADS – Lecture 21 – slide 6

Hidden Markov Models (HMMs)

More general again is the Hidden Markov Model (HMM)

I We are in the “transducer” world - our job is no longer test/accept strings;
instead we generate strings, outputting character/observations as we move
round the HMM.

I The output of characters happens at the states.

I The transitions are now simple (q, q ′) pairs (no longer character-specific).

For every q ∈ Q, every (q, q ′) ∈ ∆ we have pq,q ′ such that for every
q ∈ Q,

∑
q ′,(q,q ′)∈∆ pq,q ′ = 1.

I Every state q of the HMM will generate a character/observation from Σ
according to some probability distribution on Σ (distribution is specific to
the state).

IADS – Lecture 21 – slide 7

Example: “Weather” HMM

This is a Hidden Markov Model for modelling weather sequences (rain one day,
cloud the next, . . .). This generates sequences of weather observations.

IADS – Lecture 21 – slide 8

Hidden Markov Models (HMMs)

Definition
A Hidden Markov Model (HMM) is a graph/state-machine
M = 〈Q, Σ, ∆,P, {bq : q ∈ Q}, π〉 with ∆ ⊆ (Q × Q), together with

I A transition matrix P ∈ R+ defining a probability label pq,q ′ ∈ [0, 1] for
every (q, q ′) ∈ ∆ such that for every q ∈ Q, our “next state” distribution
satisfies ∑

q ′∈Q

pq,q ′ = 1,

and together with

I A probability distribution bq on Σ for every q ∈ Q, bq defining the
distribution of “emissions” from Σ associated with state q.

We will require
∑

a∈Σ bq(a) = 1 for every q ∈ Q.

(we must emit one character every time we visit q)

I We sometimes have an extra probability distribution π to describe the
“start state” distribution on states of Q (often uniform).

IADS – Lecture 21 – slide 9

Our “weather” HMM

State set Q is {q1, q2, q3}.

The pq,q ′ values are the probabilities on the transitions (eg pq1,q2 is 0.4).

The distribution bq1 has bq1(cloud) = 0.2 bq1(rain) = 0.6 and bq1(hail) = 0.2.

IADS – Lecture 21 – slide 10

Our “weather” HMM

The diagram doesn’t show details of the “start state” distribution π.
We will assume all states are equally likely start states (1/3 each).

HMMs generate sequences of observations (different to FSMs, which test them)

IADS – Lecture 21 – slide 11

The “max likelihood” question

Our meteorology team have drawn-up this model to capture the patterns of
weather in Scotland.

How well does it “fit” a sequence of observations? Say, for?

IADS – Lecture 21 – slide 12

The “max likelihood” question

Path q1, q3, q2, q3, q2? . . . 0 (q3 has 0-probability for “sun”)
Path q1, q1, q1, q2, q3? . . . 1

3 · 0.2 · 0.3 · 0.6 · 0.3 · 0.6 · 0.4 · 0.8 · 0.5 · 0.7
Path q3, q3, q3, q2, q3? . . . 1

3 · 0.7 · 0.5 · 0.3 · 0.5 · 0.3 · 0.3 · 0.8 · 0.5 · 0.7
3rd option best of the three shown (examining details).

IADS – Lecture 21 – slide 13

Computing the “max likelihood” path

In general, we may have a HMM of arbitrary size, with arbitrary transition
relation/matrix and arbitrary bq distributions at the nodes/states:

Given a HMM defined by M = 〈Q, Σ, ∆,P, {bq : q ∈ Q}, π〉, and a
sequence s ∈ Σ∗, what is the most likely path through M to have
generated s?

We gave three examples on the prior slide, but there are many more potential
“routes through the HMM” we can try, for a sequence of 5 observations.

As the length of the sequence increases, the number of routes increases
exponentially.

How can we get the route with highest probability (subject to the various
parameter values of our HMM)?

USE DYNAMIC PROGRAMMING

IADS – Lecture 21 – slide 14

Computing the “max likelihood” path

IADS – Lecture 21 – slide 15

Computing the “max likelihood” path

IADS – Lecture 21 – slide 16

Computing the “max likelihood” path

IADS – Lecture 21 – slide 17

Computing the “max likelihood” path

IADS – Lecture 21 – slide 18

Computing the “max likelihood” path

Dynamic programming view:

I Let s = s1 . . . sn. The optimum path ended at some state q ∈ Q.

I Considering final state q, we must have arrived there via some incoming
transition (q∗→ q) into q.

I When considering a hypothetical “final transition” q∗→ q,

I The cost of the final step, then emission is pq∗,q · bq,sn .
I The most likely path for string s1 . . . sn−1 ending in state q∗ is another

“maximum likelihood” calculation (for a slightly shorter string).

I Our collection of subproblems is the “most likely path” question for
s1 . . . si ending at state q, for every 1 ≤ i ≤ n, and for every q ∈ Q.

IADS – Lecture 21 – slide 19

Our recurrence

We will write mlp[i , q] to denote the cost of the most likely path of M to
generate s1, . . . , si which ends in q ∈ Q.

mlp[i , q] =

{
πq · bq,s1 i = 1

maxq∗∈Q {mlp[i − 1, q∗] · pq∗,q · bq,si } i > 1

(we don’t explicitly check whether (q∗, q) ∈ ∆, however, we can assume that we
have pq∗,q = 0 if this transition is not available)

We could also add an extra table called prev such that prev [i , q] is the state q∗
which optimizes the mlp[i , q] value (with prev [1, q] = ′ − ′ for all q).

Implementation:

I We will need tables mlp, prev of dimensions n × |Q | each, where n is the
length of the given string/sequence.

(exactly n, as we don’t compute anything for an empty string)

IADS – Lecture 21 – slide 20

Dynamic programming implementation

Algorithm Viterbi(M = 〈Q, Σ,P, {bq : q ∈ Q}, π〉, s = s1 . . . sn)

1. for q ∈ Q

2. mlp[1,q]← πq · bq,s1 ; prev[1,q]←’-’;

3. for i = 2 to n

4. for q ∈ Q

5. mlp[i,q]← 0; prev[i,q]←’-’;

6. for q∗ ∈ Q

7. trans← pq∗,q · bq,si
8. if (trans×mlp[i-1,q*]) > mlp[i,q]

9. mlp[i,q]←(trans×mlp[i-1,q*])

10. prev[i,q]←q*

11. max ← 0

12. for q ∈ Q

13. if mlp[n,q]>max

14. max ← mlp[n,q], maxq ← q

15. return max, q IADS – Lecture 21 – slide 21

Some Observations

Technical Observations:

I It’s not hard to see from the algorithm (and the three nested for loops)
that the running-time will be Θ(n · |Q |2) and the space used is of order
Θ(n · |Q |).

I This is efficient/“polynomial-time” even if the Model is not “Finite
State” (can be a general directed graph).

I If carrying out repeated multiplications of small probabilities, as this raises
concerns about accuracy as the values get smaller.

I In practice, many implementations instead will seek to maximize the
log of the probability (of generating that sequence).

I This has the advantage of also switching the multiplications into
additions!

I Values (the logs of probabilities) will end up negative but “max” will
still be the “max”.

IADS – Lecture 21 – slide 22

Reading and Working

Reading:

I The Viterbi algorithm is not included in the collection of Dynamic
Programming problems studied in [CLRS]. However, it appears as problem
15.5 at the end of Chapter 15.

I HMMs are used to model many natural phenomena (for example, speech
production, natural language modelling), and you will see them discussed
in many courses within Informatics.

IADS – Lecture 21 – slide 23

