Introduction to Algorithms and Data Structures Lecture 26: Satisfiability and NP-completeness

Mary Cryan

School of Informatics University of Edinburgh

Reductions between (decision) problems

If I could solve problem Q in polynomial-time, then I would also be able to solve problem R in polynomial-time.

Definition

A problem R can be reduced to the problem Q if there is a polynomial-time computable function $f : \{0, 1\}^* \to \{0, 1\}^*$ such that for all instances \mathcal{I} of R

 $R(\mathfrak{I}) = 1 \quad \Leftrightarrow \quad Q(f(\mathfrak{I})) = 1$

Means that R is no harder (in the sense of polynomial-time computation) than Q. And that Q is "at least as hard" as R.

• We write $R \leq_{\mathrm{P}} Q$.

 $(\leq_P \text{ is not like } \leq, \text{ or even } O(\cdot)$. We can ignore polynomial factors)

Reductions between (decision) problems

Meaning of $R \leq_P Q$

If I could solve problem Q in polynomial-time, then I would also be able to solve problem R in polynomial-time.

- IF Q happens to be in P (is polynomial-time solvable), then I can also solve R in polynomial-time:
 - ► Take the input instance J of R and do the polynomial-time work to compute f(J).
 - ▶ Pass $f(\mathcal{I})$ to our polynomial-time algorithm for deciding Q.
 - Return that answer
- ▶ IF *R* happens to be NP-complete (and, we believe, probably not polynomial-time solvable), then *Q* is also NP-complete.
 - ► For any problem H in NP, we can reduce it to R with some g function (because R is NP-complete). But if we instead apply f(g(·)) to instances of H, this reduces H down to Q.
- Note: ≤_P is not like ≤, or even O(·). It allows us to ignore polynomial factors.

NP-completeness

No (NP) problem is any harder than me.

Definition

A decision problem Q is said to be NP-complete if it belongs to the class NP, and it is also the case that for every problem R in NP, $R \leq_{\mathrm{P}} Q$.

The canonical NP-complete problem is Satisfiability.

- This was the first problem to be shown to be NP-complete (late 1960s/early 1970s).
- In the years that followed many other decision problems were shown to be NP complete by reduction to Satisfiability (and the increasing pool of NP-complete problems).

Satisfiability

Definition

We say a propositional logical formula ϕ over the variables $\{x_1, \ldots, x_n\}$ is in Conjunctive Normal (CNF) if it is written in the form

$$\varphi = C_1 \wedge C_2 \wedge \ldots C_m$$

where each of the clauses C_i is a "disjunction of literals" over $\{x_1, \ldots, x_n\}$

For example, if n = 5, here are two example CNF formulae:

 $\blacktriangleright \quad \varphi_2 = (x_1 \lor x_2 \lor x_3 \lor x_4) \land (\bar{x_3} \lor x_4) \land (\bar{x_4} \lor x_5) \land (\bar{x_5} \lor \bar{x_1})$

There are 2^n possible assignments to the logical variables of a CNF.

For n = 5, consider $x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1$.

- This assignment makes ϕ_1 true (all clauses are satisfied).
- This assignment does not satisfy ϕ_2 (2nd clause is violated).

Cook-Levin theorem

SAT: Given a CNF formula $\phi = C_1 \wedge \ldots \wedge C_m$ over variables $\{x_1, \ldots, x_n\}$, determine whether there is some satisfying assignment for ϕ .

Theorem (Cook-Levin)

 SAT is NP-complete.

Proved/published by Cook in 1971, and independently (behind the Iron Curtain) by Levin in late 1960s.

Cook-Levin theorem

For every NP problem R, R "reduces to" SAT

Proof works by characterising the behaviour of the polynomial-time verifier for R (on some instance \mathcal{I}) as a specially-designed CNF formula.

- Proof works from the "polynomial-time verifier" for the problem R (which must exist), considering the different operations/steps of that verifier.
- All operations/steps of a verifier for the computation of the comparison of a "certificate" against J can be considered as operations on binary data, can be encoded as Boolean/logical operations.
- Can be used to build a big CNF formula which is true ⇔ there was some "certificate" for instance J wrt R.
- The encoding of this algorithm can be shown to be "polynomial-size" in the size of J (because of the verifier being polynomial-time).
- ▶ Full details in Introduction to Theoretical Computer Science (ITCS).

world of NP

Independent Sets

Our interest is in the INDEPENDENT SET problem.

Definition

Given an undirected graph G = (V, E), an Independent Set (IS) is a subset $I \subseteq V$ such that for every pair $u, v \in I$, $(u, v) \notin E$. The *size* of such an independent set is the cardinality |I|.

We can consider the following decision problem:

INDEPENDENT SET: Given an undirected graph G = (V, E), and a natural number $k \in \mathbb{N}$, determine whether G has an IS of size $\geq k$.

Independent Set

For this graph, the maximum Independent Set will have size 3. One solution is $\{b, e, d\}$.

3-CNF and 3-SAT

Definition

The CNF formula ϕ is said to be 3-CNF if each of its clauses C_j is a disjunction of exactly three literals.

3-SAT: Given a 3-CNF formula ϕ over the variables $\{x_1, \ldots, x_n\}$, determine whether there is an assignment of binary values to $\{x_1, \ldots, x_n\}$ that causes all clauses to be satisfied.

Theorem 3-SAT *is NP-complete.*

We will use 3-SAT as our "reducing" problem (R), to show that INDEPENDENT SET (Q) is also NP-complete.

Reduction: 3-SAT to Independent Set

Our starting point is the 3-SAT problem.

We are given $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$, and each of the C_j is $(\ell_{j,1} \vee \ell_{j,2} \vee \ell_{j,3})$ for three *literals* over $\{x_1, \ldots, x_n\}$ (for example, $\ell_{j,1} = x_4, \ell_{j,2} = \bar{x_1}, \ell_{j,3} = \bar{x_9}$).

Interested in an *assignment* to the $\{x_1, \ldots, x_n\}$ which makes *every* clause satisfied.

- ▶ C_j is satisfied if *at least one* of its literals are satisfied: $\ell_{j,1}$ or $\ell_{j,2}$, or $\ell_{j,3}$
- ► For every *j*, we will add nodes *l_{j1}*, *l_{j,2}*, *l_{j,3}* to our "Independent Set" graph. We will add edges to connect *l_{j1}*, *l_{j2}*, *l_{j3}* as a triangle ... so at most one of *l_{j1}*, *l_{j2}*, *l_{j3}* can be chosen to make *C_j* satisfied.
- ► For every variable x_i, add an edge between every positive literal l_{j,} = x_i and every negative literal l_k = x̄_i ... so if we choose x_i to satisfy some clause, the "opposite literal" cannot be used to satisfy any other clause.
- We will have a Independent Set of size m ⇔ there is some satisfying assignment for φ.

Example: Independent Set reduction

Suppose our 3-CNF formula was $(x_2 \lor \bar{x_4} \lor \bar{x_1}) \land (x_4 \lor \bar{x_2} \lor x_3) \land (x_1 \lor x_2 \lor \bar{x_4})$.

Suppose our 3-CNF formula was $(\varkappa_{x} \vee \overline{\chi_{4}} \vee \overline{\chi_{4}}) \wedge (\varkappa_{x} \vee \overline{\chi_{2}} \vee \chi_{3}) \wedge (\varkappa_{x} \vee \varkappa_{x} \vee \chi_{4})$ 20-'sc3 162 individual nodes.

Example: Independent Set solution

Suppose our 3-CNF formula was $(x_2 \lor \bar{x_4} \lor \bar{x_1}) \land (x_4 \lor \bar{x_2} \lor x_3) \land (x_1 \lor x_2 \lor \bar{x_4})$.

Suppose our 3-CNF formula was $(\varkappa_{2} \vee \overline{\chi_{4}} \vee \overline{\chi_{5}}) \wedge (\varkappa_{4} \vee \overline{\chi_{2}} \vee \chi_{3}) \wedge (\varkappa_{1} \vee \varkappa_{2} \vee \overline{\chi_{4}})$ 503 26, 362 Σu

Example: Independent Set is NP-complete

Size of our "reduction"

▶ Number of nodes is equal to the number of *literals* of the 3-CNF - 3m

• Number of edges is at most $3m + 3\frac{m^2}{2} = O(m^2)$

The construction of the graph (for the INDEPENDENT-SET instance $f(\mathcal{I})$) is methodical; can be done in polynomial-time:

First build the "triangle" for each clause C_j and its literals.
(Collectively, all these can be added to G in O(m) time)

Next iterate through each variable *i* adding all "clashing pair" edges for x_i.
(Done naïvely, would take O(m²) for each x_i, so at most O(n · m²) overall.)

We have argued why the constructed graph will have an Independent Set of size $\geq m \Leftrightarrow$ our 3-CNF formula was satisfiable.

3-SAT \leq_{P} Independent Set

Reading and Working

Reading:

Roughgarden 22.1, 22.2, 22.3, 22.4, 22.5. OR

KT (Kleinberg and Tardos) 8.3.Satisfiability

The following short video is worth a look: Short video about Cook-Levin

Working:

▶ We never showed that 3-SAT was NP-complete. Think about making a reduction from SAT to 3-SAT to show that 3-SAT is also NP-complete.