Introduction to Algorithms and Data Structures

Lecture 26: Satisfiability and NP-completeness

Mary Cryan

School of Informatics
University of Edinburgh

IADS — Lecture 26— slide 1

Reductions between (decision) problems

If | could solve problem @ in polynomial-time, then | would also be
able to solve problem R in polynomial-time.

Definition
A problem R can be reduced to the problem Q if there is a polynomial-time
computable function f :{0,1}* — {0, 1}* such that for all instances J of R

RO =1 & Qf9) =1

» Means that R is no harder (in the sense of polynomial-time computation)
than Q. And that @ is “at least as hard” as R.

> We write R <p Q.

(<p is not like <, or even O(-). We can ignore polynomial factors)

IADS — Lecture 26— slide 2

Reductions between (decision) problems

problem R problem &
compale £(37) +@)
T T >
. I@/ Y pglygﬂ,aL ‘@ .
. . RN time

all tne 1nstancey

of decision problemn R stances o Prblem &

d bath
need o enSure R(I'):—] <:S @.(‘F{l\\ =) (:if;‘ecctlbis\
— of e <>

Lhen 'uF we l\c.oL a pb[br\nmia(-emlc Ql‘jur}_tl-m (2 anSwe, @

we uld inor gorate £ b ase buld o

algorikhm f anSwe~ R. Palynom ¢ ~time

IADS — Lecture 26— slide 3

Meaning of R <p Q

If | could solve problem @ in polynomial-time, then | would also be
able to solve problem R in polynomial-time.

» |F Q happens to be in P (is polynomial-time solvable), then | can also
solve R in polynomial-time:

» Take the input instance J of R and do the polynomial-time work to
compute f(J).

» Pass f(J) to our polynomial-time algorithm for deciding Q.

» Return that answer

» IF R happens to be NP-complete (and, we believe, probably not
polynomial-time solvable), then @ is also NP-complete.

» For any problem H in NP, we can reduce it to R with some g
function (because R is NP-complete). But if we instead apply f(g(-))
to instances of H, this reduces H down to Q.

» Note: <p is not like <, or even O(-). It allows us to ignore polynomial
factors.

IADS — Lecture 26— slide 4

NP-completeness

No (NP) problem is any harder than me.

Definition
A decision problem @ is said to be NP-complete if it belongs to the class NP,
and it is also the case that for every problem R in NP, R <p Q.

The canonical NP-complete problem is Satisfiability.

» This was the first problem to be shown to be NP-complete (late
1960s/early 1970s).

» In the years that followed many other decision problems were shown to be
NP complete by reduction to Satisfiability (and the increasing pool of
NP-complete problems).

IADS — Lecture 26— slide 5

Satisfiability

Definition
We say a propositional logical formula ¢ over the variables {xy,...,x,} is in
Conjunctive Normal (CNF) if it is written in the form

b=GANGN...C,
where each of the clauses C; is a “disjunction of literals” over {x,...,x,}

For example, if n =5, here are two example CNF formulae:

> b= V)N Vo)AV xVx)

> b= VeVxaVx)AsVx)ABaVxs) AV x)
There are 2" possible assignments to the logical variables of a CNF.
For n =5, consider x; =0,x =0,x3 = 1,x4 =0, x5 = 1.

» This assignment makes ¢; true (all clauses are satisfied).

» This assignment does not satisfy ¢, (2nd clause is violated).

IADS — Lecture 26— slide 6

Cook-Levin theorem

SAT: Given a CNF formula & = G /... A\ G, over variables {x1,..., Xy},
determine whether there is some satisfying assignment for ¢.

Theorem (Cook-Levin)
SAT is NP-complete.

Proved/published by Cook in 1971, and independently (behind the Iron Curtain)
by Levin in late 1960s.

IADS — Lecture 26— slide 7

Cook-Levin theorem

For every NP problem R, R “reduces to” SAT

Proof works by characterising the behaviour of the polynomial-time verifier for R
(on some instance J) as a specially-designed CNF formula.

>

>

Proof works from the “polynomial-time verifier” for the problem R (which
must exist), considering the different operations/steps of that verifier.

All operations/steps of a verifier for the computation of the comparison of
a “certificate” against J can be considered as operations on binary data,
can be encoded as Boolean/logical operations.

Can be used to build a big CNF formula which is true & there was some
“certificate” for instance J wrt R.

The encoding of this algorithm can be shown to be “polynomial-size” in
the size of J (because of the verifier being polynomial-time).

Full details in Introduction to Theoretical Computer Science (ITCS).

IADS — Lecture 26— slide 8

world of NP

e Ffob‘tw‘
Shaun Lo
be NP Camplete

% Dot know whether P=ANP or
whelhe~ there are POblems (a4
NP but not in P

% 1€ NP and P are diffecet then
SAT (and olne~ NP- comp (ele Nruhléms)

e ocukside P

= edit disbangy

*shartest paln .
*2-SAT

. Sur-ti-ﬁ »

IADS — Lecture 26— slide 9

Independent Sets

Our interest is in the INDEPENDENT SET problem.

Definition

Given an undirected graph G = (V, E), an Independent Set (IS) is a subset
I C V such that for every pair u,v € I, (u,v) & E. The size of such an
independent set is the cardinality |/].

We can consider the following decision problem:

INDEPENDENT SET: Given an undirected graph G = (V, E), and a natural
number k € N, determine whether G has an IS of size > k.

IADS — Lecture 26— slide 10

Independent Set

For this graph, the maximum Independent Set will have size 3.
One solution is {b, e, d}.

IADS — Lecture 26— slide 11

3-CNF and 3-SAT

Definition
The CNF formula ¢ is said to be 3-CNF if each of its clauses C; is a disjunction
of exactly three literals.

3-SAT: Given a 3-CNF formula ¢ over the variables {x,...,x,}, determine
whether there is an assignment of binary values to {xi,...,x,} that causes all
clauses to be satisfied.

Theorem
3-SAT is NP-complete.

We will use 3-SAT as our “reducing” problem (R), to show that INDEPENDENT
SET (Q) is also NP-complete.

IADS — Lecture 26— slide 12

Reduction: 3-SAT to Independent Set

Our starting point is the 3-SAT problem.

We are given ¢ = GG A G A ... A\ Gy, and each of the G is ({1 V{2V {;3)
for three literals over {xi, ..., xn} (for example, {; 1 = xa,{; » = X1, 3 = Xo).

Interested in an assignment to the {x, ..., x,} which makes every clause satisfied.

> (; is satisfied if at least one of its literals are satisfied: £; 1 or {; 5, or {; 3

> For every j, we will add nodes {j; ,; 2, {; 3 to our “Independent Set" graph.
We will add edges to connect {; 1, 2,¢; 3 as a triangle ... so at most one
of €1, € 2,43 can be chosen to make C; satisfied.

» For every variable x;, add an edge between every positive literal {;. = x;
and every negative literal ;. = X; ... so if we choose x; to satisfy some
clause, the “opposite literal” cannot be used to satisfy any other clause.

» We will have a Independent Set of size m & there is some satisfying
assignment for ¢.

IADS — Lecture 26— slide 13

Example: Independent Set reduction

Suppose our 3-CNF formula was (xo VX3 Vi) A (xa VoV x3) A (x1VxV xg).

Suppose. sur 3-(NIF formua was
(eav Xy VIGYA (kg v e vIS) A (v 22 v 30

farmally,
we as?; d.

51;& pli#'e/a.f.
NemES s e

ande

4 S, &S
U\.b:) art. ’
in dawdua! nodes.

IADS — Lecture 26— slide 14

Example: Independent Set solution

Suppose our 3-CNF formula was (xo VX3 Vi) A (xa VoV x3) A (x1VxV xg).

S"PPDSC sur 3-OF ormua was
(ea v 3, VIV A (g v 3 vI) A (2, v 22V)

IADS — Lecture 26— slide 15

Example: Independent Set is NP-complete

Size of our “reduction”
» Number of nodes is equal to the number of literals of the 3-CNF - 3m
» Number of edges is at most 3m + 3%2 =0(m?)

The construction of the graph (for the INDEPENDENT-SET instance f(J)) is
methodical; can be done in polynomial-time:

» First build the “triangle” for each clause C; and its literals.
(Collectively, all these can be added to G in O(m) time)

» Next iterate through each variable i adding all “clashing pair” edges for x;.

(Done naively, would take O(m?) for each x;, so at most O(n- m?) overall.)

We have argued why the constructed graph
will have an Independent Set of size > m < our 3-CNF formula was satisfiable.

3-SAT <p INDEPENDENT SET

IADS — Lecture 26— slide 16

Reading and Working

Reading:
Roughgarden 22.1, 22.2, 22.3, 22.4, 22.5. OR
KT (Kleinberg and Tardos) 8.3.Satisfiability

The following short video is worth a look: Short video about Cook-Levin
Working:

» We never showed that 3-SAT was NP-complete. Think about making a
reduction from SAT to 3-SAT to show that 3-SAT is also NP-complete.

IADS — Lecture 26— slide 17

https://www.youtube.com/watch?v=nKNd9iExRO8

