
Introduction to Algorithms and Data Structures

Lecture 26: Satisfiability and NP-completeness

Mary Cryan

School of Informatics
University of Edinburgh

IADS – Lecture 26– slide 1



Reductions between (decision) problems

If I could solve problem Q in polynomial-time, then I would also be
able to solve problem R in polynomial-time.

Definition
A problem R can be reduced to the problem Q if there is a polynomial-time
computable function f : {0, 1}∗ → {0, 1}∗ such that for all instances I of R

R(I) = 1 ⇔ Q(f (I)) = 1

I Means that R is no harder (in the sense of polynomial-time computation)
than Q. And that Q is “at least as hard” as R.

I We write R ≤P Q.

(≤P is not like ≤, or even O(·). We can ignore polynomial factors)

IADS – Lecture 26– slide 2



Reductions between (decision) problems

IADS – Lecture 26– slide 3



Meaning of R ≤P Q

If I could solve problem Q in polynomial-time, then I would also be
able to solve problem R in polynomial-time.

I IF Q happens to be in P (is polynomial-time solvable), then I can also
solve R in polynomial-time:

I Take the input instance I of R and do the polynomial-time work to
compute f (I).

I Pass f (I) to our polynomial-time algorithm for deciding Q.
I Return that answer

I IF R happens to be NP-complete (and, we believe, probably not
polynomial-time solvable), then Q is also NP-complete.

I For any problem H in NP, we can reduce it to R with some g
function (because R is NP-complete). But if we instead apply f (g(·))
to instances of H, this reduces H down to Q.

I Note: ≤P is not like ≤, or even O(·). It allows us to ignore polynomial
factors.

IADS – Lecture 26– slide 4



NP-completeness

No (NP) problem is any harder than me.

Definition
A decision problem Q is said to be NP-complete if it belongs to the class NP,
and it is also the case that for every problem R in NP, R ≤P Q.

The canonical NP-complete problem is Satisfiability.

I This was the first problem to be shown to be NP-complete (late
1960s/early 1970s).

I In the years that followed many other decision problems were shown to be
NP complete by reduction to Satisfiability (and the increasing pool of
NP-complete problems).

IADS – Lecture 26– slide 5



Satisfiability

Definition
We say a propositional logical formula φ over the variables {x1, . . . , xn} is in
Conjunctive Normal (CNF) if it is written in the form

φ = C1 ∧ C2 ∧ . . .Cm

where each of the clauses Ci is a “disjunction of literals” over {x1, . . . , xn}

For example, if n = 5, here are two example CNF formulae:

I φ1 = (x2 ∨ x̄4)∧ (x4 ∨ x̄2)∧ (x1 ∨ x2 ∨ x̄4)

I φ2 = (x1 ∨ x2 ∨ x3 ∨ x4)∧ (x̄3 ∨ x4)∧ (x̄4 ∨ x5)∧ (x̄5 ∨ x̄1)

There are 2n possible assignments to the logical variables of a CNF.

For n = 5, consider x1 = 0, x2 = 0, x3 = 1, x4 = 0, x5 = 1.

I This assignment makes φ1 true (all clauses are satisfied).

I This assignment does not satisfy φ2 (2nd clause is violated).

IADS – Lecture 26– slide 6



Cook-Levin theorem

Sat: Given a CNF formula φ = C1 ∧ . . . ∧ Cm over variables {x1, . . . , xn},
determine whether there is some satisfying assignment for φ.

Theorem (Cook-Levin)
SAT is NP-complete.

Proved/published by Cook in 1971, and independently (behind the Iron Curtain)
by Levin in late 1960s.

IADS – Lecture 26– slide 7



Cook-Levin theorem

For every NP problem R, R “reduces to” Sat

Proof works by characterising the behaviour of the polynomial-time verifier for R
(on some instance I) as a specially-designed CNF formula.

I Proof works from the “polynomial-time verifier” for the problem R (which
must exist), considering the different operations/steps of that verifier.

I All operations/steps of a verifier for the computation of the comparison of
a “certificate” against I can be considered as operations on binary data,
can be encoded as Boolean/logical operations.

I Can be used to build a big CNF formula which is true ⇔ there was some
“certificate” for instance I wrt R.

I The encoding of this algorithm can be shown to be “polynomial-size” in
the size of I (because of the verifier being polynomial-time).

I Full details in Introduction to Theoretical Computer Science (ITCS).

IADS – Lecture 26– slide 8



world of NP

IADS – Lecture 26– slide 9



Independent Sets

Our interest is in the Independent Set problem.

Definition
Given an undirected graph G = (V ,E ), an Independent Set (IS) is a subset
I ⊆ V such that for every pair u, v ∈ I , (u, v) /∈ E . The size of such an
independent set is the cardinality |I |.

We can consider the following decision problem:

Independent Set: Given an undirected graph G = (V ,E ), and a natural
number k ∈ N, determine whether G has an IS of size ≥ k.

IADS – Lecture 26– slide 10



Independent Set

For this graph, the maximum Independent Set will have size 3.
One solution is {b, e, d}.

IADS – Lecture 26– slide 11



3-CNF and 3-SAT

Definition
The CNF formula φ is said to be 3-CNF if each of its clauses Cj is a disjunction
of exactly three literals.

3-SAT: Given a 3-CNF formula φ over the variables {x1, . . . , xn}, determine
whether there is an assignment of binary values to {x1, . . . , xn} that causes all
clauses to be satisfied.

Theorem
3-SAT is NP-complete.

We will use 3-SAT as our “reducing” problem (R), to show that Independent
Set (Q) is also NP-complete.

IADS – Lecture 26– slide 12



Reduction: 3-SAT to Independent Set

Our starting point is the 3-SAT problem.

We are given φ = C1 ∧ C2 ∧ . . . ∧ Cm, and each of the Cj is (`j,1 ∨ `j,2 ∨ `j,3)
for three literals over {x1, . . . , xn} (for example, `j,1 = x4, `j,2 = x̄1, `j,3 = x̄9).

Interested in an assignment to the {x1, . . . , xn} which makes every clause satisfied.

I Cj is satisfied if at least one of its literals are satisfied: `j,1 or `j,2, or `j,3

I For every j , we will add nodes `j1,, `j,2, `j,3 to our “Independent Set” graph.

We will add edges to connect `j,1, `j,2, `j,3 as a triangle . . . so at most one
of `j,1, `j,2, `j,3 can be chosen to make Cj satisfied.

I For every variable xi , add an edge between every positive literal `j,· = xi
and every negative literal `k,· = x̄i . . . so if we choose xi to satisfy some
clause, the “opposite literal” cannot be used to satisfy any other clause.

I We will have a Independent Set of size m ⇔ there is some satisfying
assignment for φ.

IADS – Lecture 26– slide 13



Example: Independent Set reduction

Suppose our 3-CNF formula was (x2 ∨ x̄4 ∨ x̄1)∧ (x4 ∨ x̄2 ∨ x3)∧ (x1 ∨ x2 ∨ x̄4).

IADS – Lecture 26– slide 14



Example: Independent Set solution

Suppose our 3-CNF formula was (x2 ∨ x̄4 ∨ x̄1)∧ (x4 ∨ x̄2 ∨ x3)∧ (x1 ∨ x2 ∨ x̄4).

IADS – Lecture 26– slide 15



Example: Independent Set is NP-complete

Size of our “reduction”

I Number of nodes is equal to the number of literals of the 3-CNF - 3m

I Number of edges is at most 3m + 3m
2
2 = O(m2)

The construction of the graph (for the Independent-Set instance f (I)) is
methodical; can be done in polynomial-time:

I First build the “triangle” for each clause Cj and its literals.

(Collectively, all these can be added to G in O(m) time)

I Next iterate through each variable i adding all “clashing pair” edges for xi .

(Done näıvely, would take O(m2) for each xi , so at most O(n ·m2) overall.)

We have argued why the constructed graph
will have an Independent Set of size ≥ m ⇔ our 3-CNF formula was satisfiable.

3-SAT ≤P Independent Set

IADS – Lecture 26– slide 16



Reading and Working

Reading:

Roughgarden 22.1, 22.2, 22.3, 22.4, 22.5. OR

KT (Kleinberg and Tardos) 8.3.Satisfiability

The following short video is worth a look: Short video about Cook-Levin

Working:

I We never showed that 3-SAT was NP-complete. Think about making a
reduction from SAT to 3-SAT to show that 3-SAT is also NP-complete.

IADS – Lecture 26– slide 17

https://www.youtube.com/watch?v=nKNd9iExRO8

