Introduction to Algorithms and Data Structures

Lecture 28: Dealing with NP-completeness (exhaustive search)

Mary Cryan

School of Informatics University of Edinburgh

Implications of NP-complete status

When prove a problem is NP-complete, we no longer expect to be able to design polynomial-time algorithms to generate exact solutions (to the Decision problem or to an Optimization version)

What are our options?

- Heuristic methods ("rules of thumb") that might not guarantee good results, but behave well in practice.
- Might there be a polynomial-time algorithm to search for an *approximate* solution rather than an exact one? (L25)
- Brute-force methods that run in exponential-time (today)
- Recursive backtracking (today)

Today we mostly dealing with the search version of the NP-complete problem - though we will resolve the decision question too.

We will demonstrate our methods wrt SAT.

"Brute force"

Might not have studied it formally but probably we know what it means: "try all possibilities"

If our propositional formula is in CNF over n logical variables, then there are 2^n different assignments to iterate through.

We have $\Phi = C_1 \wedge \ldots \wedge C_m$

Consider a specific test assignment $\mathbf{x} = x_1 \dots x_n \in \{0, 1\}^n$

- Each clause C_j can be checked for satisfiability wrt x in time $O(|C_j|)$.
- The formula Φ can be checked for satisfiability in time $\sum_{j=1}^{m} O(|C_j|) = O(|\Phi|)$.

So the full "brute force" algorithm could be carried out in $O(2^n \cdot |\phi|)$ time. For a 3-CNF formula this would be $O(2^n \cdot m)$ time

Recursive backtracking (basic algorithm)

We set-up the exploration of the search space to exploit shared properties of the collection of the assignments $\mathbf{x} \in \{0, 1\}^n$.

Work with respect to a "current partial assignment" $\mathbf{b} = b_i \mid i \in \mathcal{I}$.

Algorithm SAT-backtrack($\Phi = C_1 \land \ldots \land C_m, \mathfrak{I}, \mathbf{b}$)

- 1. if (m = 0) then return T
- 2. else if Φ contains an empty clause then return ${\sf F}$
- 3. else choose an unassigned variable x_i $(i \in [n] \setminus \mathcal{I})$ how?

4.
$$\Phi' \leftarrow \Phi(x_i \leftarrow 0)$$

(simplifying Φ' based on this new assignment)

- 5. **if** SAT-backtrack($\Phi', \mathcal{I} \cup \{i\}, \mathbf{b} \cdot \mathbf{0}$)
- 6. then return T
- 7. **else** $\Phi' \leftarrow \Phi(x_i \leftarrow 1)$

(simplifying Φ' based on this new assignment)

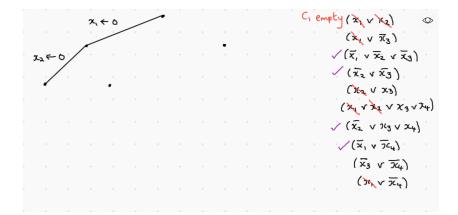
8. **return** SAT-backtrack($\Phi', \mathcal{I} \cup \{i\}, \mathbf{b} \cdot \mathbf{1}$)

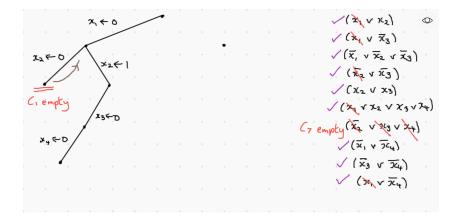
We take Φ over 4 variables $\{x_1, x_2, x_3, x_4\}$ with the 10 clauses

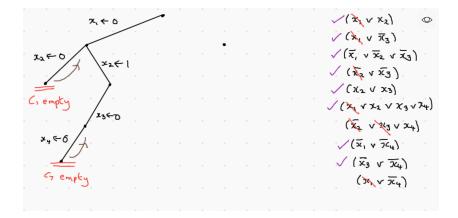
$$\Phi = (x_1 \lor x_2) \land (x_1 \lor \bar{x_3}) \land (\bar{x_1} \lor \bar{x_2} \lor x_3) \land (\bar{x_2} \lor \bar{x_3}) \land (x_2 \lor x_3)$$

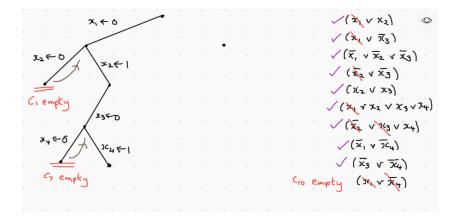
$$\land (x_1 \lor x_2 \lor x_3 \lor x_4) \land (\bar{x_2} \lor x_3 \lor x_4) \land (\bar{x_1} \lor \bar{x_4}) \land (\bar{x_3} \lor x_4) \land (x_1 \lor \bar{x_4})$$

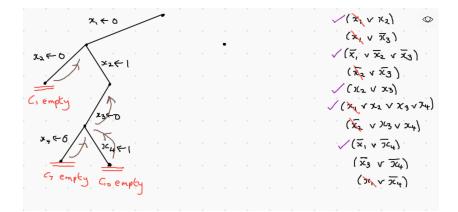
We work through this example in the following slides.

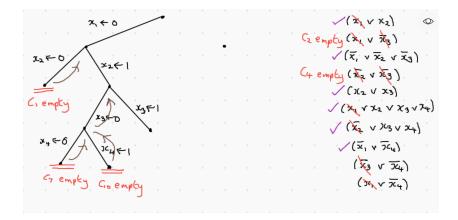


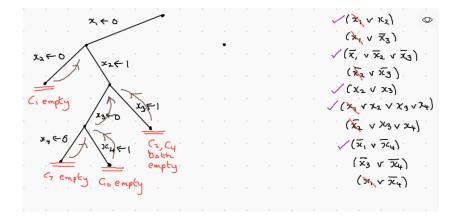


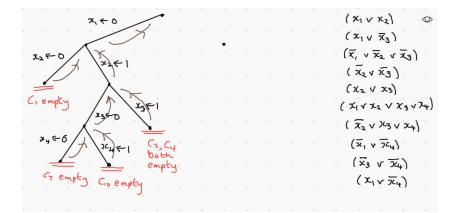


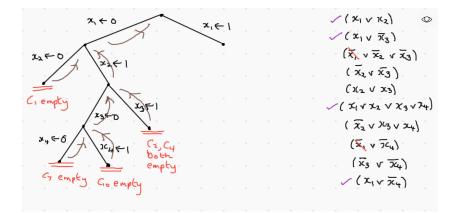


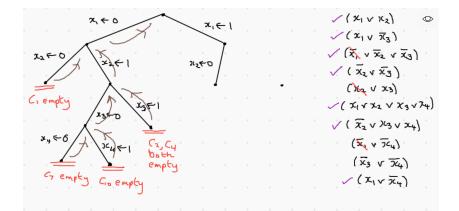


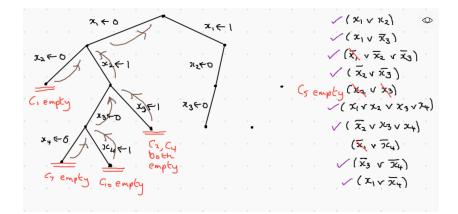


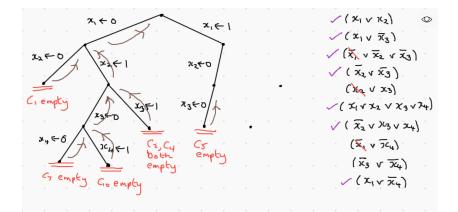


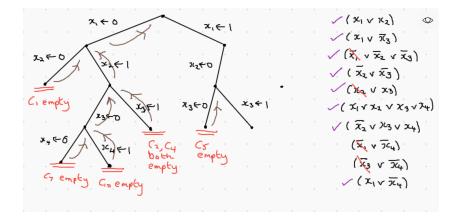


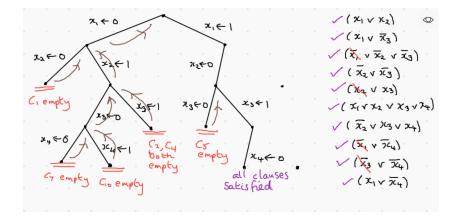












Definitions

We work with respect to a general SAT formula $\Phi = C_1 \land \ldots \land C_m$ where each of the C_j contains between 1 and *n* literals over the variables $\{x_1, \ldots, x_n\}$.

- ► A unit clause is a clause which contains exactly one literal (for example, C_j = (x₂) or C_j = (x̄₇))
- A pure literal is defined with respect to the whole collection of clauses: the situation when a logical variable x_i appears with only one polarity, either
 - only appearing as the positive literal x_i ...
 - or alternatively only appearing as the negative literal $\bar{x_i}$

(but not with both signs)

Both definitions apply with respect to "active" clauses/literals in a partial assignment (some variables set), as well as the original CNF.

Some observations

We can make some observations to improve recursive backtracking:

unit clause If Φ contains a unit clause (ℓ), then there is only *one possible option* for setting the underlying variable in a fully Satisfying assignment:

If ℓ is x_i , then set $x_i \leftarrow 1$, else if ℓ is \bar{x}_i , set $x_i \leftarrow 0$.

pure literal If we have some variable x_i that always appears with the same polarity (always as x_i , or alternatively always as \bar{x}_i)... then we may assume we set x_i is set to its polarity in a satisfying assignment.

There might also be a satisfying assignment setting x_i in conflict with its polarity, but it cannot *hurt* to match the polarity.

Applying these rules will alter the Φ , removing some clauses (unit clause) or reducing the number of literals in other clauses. We should iterate

Davis, Putnam, Logemann, Loveland (DPLL)

Algorithm DPLL($\Phi = C_1 \land \ldots \land C_m$)

- 1. if every literal in Φ is "pure" then return T
- 2. else if Φ contains an empty clause then return F
- 3. else

4. while we have some "unit clause"
$$(\ell)$$
 in Φ

5. **if**
$$(\ell \text{ is } x_i)$$
 then $\Phi \leftarrow \Phi(x_i \leftarrow 1)$

6. else if
$$(\ell \text{ is } \bar{x_i})$$
 then $\Phi \leftarrow \Phi(x_i \leftarrow 0)$

7. while we have some "pure literal"
$$\ell$$
 in Φ

8. **if**
$$(\ell \text{ is } x_i)$$
 then $\Phi \leftarrow \Phi(x_i \leftarrow 1)$

9. else if
$$(\ell \text{ is } \bar{x}_i)$$
 then $\Phi \leftarrow \Phi(x_i \leftarrow 0)$

- 10. Choose a undetermined variable x_i of Φ how?
- 11. return (DPLL($\Phi(x_i \leftarrow 0)$) or DPLL($\Phi(x_i \leftarrow 1)$))

 $\Phi(x_i \leftarrow 0)$ eliminates the clauses that contain \bar{x}_i (now satisfied), and deletes any x_i literals inside individual clauses of Φ (clauses become harder to satisfy). $\Phi(x_i \leftarrow 1)$ is symmetric.

Choosing a variable to "split" on

The process of forking-off DPLL($\Phi(x_i \leftarrow 0)$) and DPLL($\Phi(x_i \leftarrow 1)$) is called splitting on x_i .

There are different ways used to choose the next x_i :

- Any variable still active in the "as-yet-unsatisfied" clauses (our approach).
- Variable that appears in the most clauses.
- Variable x_1 that a lot, *mostly* with one polarity (match that polarity)
- Any literal in the shortest clause.
- ► The variable x_i with the highest weighted sum of clause sizes $\sum_{k=2}^{n} 2^{-k} |\{C_j : x_i \in C_j, |C_j| = k\}|.$

These are all *heuristics* - will work well on some instances of SAT, but may be poor choices for other examples.

Impact

Running time of DPLL:

- The bound of $O(2^n \cdot |\phi|)$ still applies.
- Running-time in practice is much much better than this.
- Proving improved upper bounds:

Can't really hope for significant improvements (SAT being NP-complete).

DPLL said to be "a collection of algorithms" (the different heuristics for splitting).

DPLL forms the basis of many practical "SAT solvers" like GRASP and Chaff.

Further study

Viewing:

The "Sudoku problem" can also be addressed via recursive backtracking.

Doing:

Run the DPLL backtracking algorithm on the example from these slides.

You will notice it is much quicker than the naïve backtracking algorithm (especially on the $x_1 \leftarrow 0$ branch).