Introduction to Algorithms and Data Structures

Lecture 28: Dealing with NP-completeness
(exhaustive search)

Mary Cryan

School of Informatics
University of Edinburgh

IADS — Lecture 28 — slide 1

Implications of NP-complete status

When prove a problem is NP-complete, we no longer expect to be able
to design polynomial-time algorithms to generate exact solutions (to
the Decision problem or to an Optimization version)

What are our options?

» Heuristic methods (“rules of thumb”) that might not guarantee good
results, but behave well in practice.

» Might there be a polynomial-time algorithm to search for an approximate
solution rather than an exact one? (L25)

» Brute-force methods that run in exponential-time (today)

» Recursive backtracking (today)
Today we mostly dealing with the search version of the NP-complete problem -
though we will resolve the decision question too.

We will demonstrate our methods wrt SAT.

IADS — Lecture 28 — slide 2

“Brute force”

Might not have studied it formally but probably we know what it means:
“try all possibilities”

If our propositional formula is in CNF over n logical variables, then there are 2"
different assignments to iterate through.
We have ® = G N ...\ Cp,

Consider a specific test assignment x = x3 ... x, € {0,1}"

» Each clause C; can be checked for satisfiability wrt x in time O(|Cl).

» The formula @ can be checked for satisfiability in
time ZJ L O0UGIH) = O(lD)).

So the full “brute force” algorithm could be carried out in O(2" - |$]) time.
For a 3-CNF formula this would be O(2" - m) time

IADS — Lecture 28 — slide 3

Recursive backtracking (basic algorithm)

We set-up the exploration of the search space to exploit shared properties of the
collection of the assignments x € {0, 1}".

Work with respect to a “current partial assignment” b = b; | i € J.

Algorithm SAT-backtrack(® = C; A ... A Cmy 9, b)
1. if (m=0) then return T

2. else if ® contains an empty clause then return F
3. else choose an unassigned variable x; (i € [n] \ J) how?
4

Q'+ O(x; + 0)
(simplifying ®' based on this new assignment)

5. if SAT-backtrack(®’,JU{i},b-0)
6 then return T
else @' «— O(x; + 1)
(simplifying ®' based on this new assignment)
8. return SAT-backtrack(®’,JU{i},b- 1)

IADS — Lecture 28 — slide 4

Example: recursive backtracking

We take @ over 4 variables {xy, x2, x3, X4} with the 10 clauses

o = (X]_\/XQ)/\(X:[\/)?3)/\()?1\/)?2\/X3)/\()?2\/)?3)/\(Xz\/Xg,)
AXx1VxVx3Vx) AV x3sVx) AV N\ (sYVx) A\ (xV)

We work through this example in the following slides.

IADS — Lecture 28 — slide 5

Example:

%X €0

recursive backtracking

(%, v 1\ o
(%, v)
(X, v % v X3)
(v %3
(ia v x3)
(% ¥ X2 V Xy v)
(. v 15 v x4
(3, v 7¢)
(% v 3%
(o v 300

IADS — Lecture 28 — slide 6

Example:

recursive backtracking

(% v %3) e
. (3 v %)
VX, v % v X3)
(2 v %3
(e v x3)
(\v’nvxwh)
(%o v 23 v)
\/(§| Va—‘u\
(% v 3,)
NG

IADS — Lecture 28 — slide 7

Xa €0

Example:

%€ 0

recursive backtracking

G eMPtj (3 v) o
(v)
NIRRT TN
(G v 3
Cita v %)
(% ¥ % v X3 v %)
VA CVE XV
(36, v 98y
(% v 3%)
O v 0

IADS — Lecture 28 — slide 8

Example: recursive backtracking

xeo

X0

Cx EMPt:j

(% v 1) o
(3 v 33)
(X, v R v X3)
(a v 23
(o v x3)
(% ¥ %2 vx;v%r)
(X v I v 24
VAT R
(%5 v)
E NN

IADS — Lecture 28 — slide 9

Example:

xKE<O
11(—"0/{ e
C\ emPtj

recursive backtracking

3 v) o
Gy v T3)
(X, v T v X3)
({evft_g\
VCita v x3)
\/(b\wrhvxgﬂﬂr)
(% v 23 v xy)
NACTREIA)
(% v 3%)
(v 30

IADS — Lecture 28 — slide 10

Example: recursive backtracking

/(%\vacl\ o

EEREN

VX, v X v X3)

vV (R v %3

VCita v x3)

O ¥ % v X3 v %)
(k. v v)
NACTEETAY
V(% v 3%

ENEN

IADS — Lecture 28 — slide 11

Example:

recursive backtracking

Sy v) o
EENEN

VX, v % v X3)

V(K v 13
V(e v x3)

/(xkarnvxgv%r)

(7 ew\'Ot (i v LQV \

\j/(i v")_cu\\”K
VTR
ST

IADS — Lecture 28 — slide 12

Example: recursive backtracking

MR o
EEREN
V(X v % v xg)
\/(va‘ﬂ
VCita v x3)
VR ¥V XV)
(% vt v)
VA CTRETA
V(% v %)
E NG

IADS — Lecture 28 — slide 13

Example: recursive backtracking

\/(i\v ®2) o
\/(\v)

MR RED

J (-K} NEZA
V(e v x3)

/()\fxxvx',vh)
V(R v v)
NMETREA
V(% v %)

Cro emwtj (i\\rkﬁ\

IADS — Lecture 28 — slide 14

Example:

recursive backtracking

% v 1) o
ECREN
V(X v E v Xa)
V(R v 13
V(e v x3)
\/(\vmvxgvh)
(k. v v)
NMETREA
V(% v)
ENEN

IADS — Lecture 28 — slide 15

Example: recursive backtracking

NN o
(3 v)
VX, v % v X3)
(R v %3
VCita v x3)
\/(\vn v xgvh)
(% v 23 v xy)
NACTEA
(%5 v 3%)
<8 e"\rkj 2 e”\r’L‘j (),\v %)

IADS — Lecture 28 — slide 16

Example: recursive backtracking

N EREN o
G empty (% v 36
VX, v ¥ v Xa)
G emply (B v %3)
V(e v x3)
\/(b\vnvxav%r)
VAR IE™
NACTREA
{\2{ v %)

E NN

IADS — Lecture 28 — slide 17

Example: recursive backtracking

% v 1) o
(3 v)
V(X v E v)
(R v 13)
V(e v x3)
‘/0\" K2 V X3 v)
(. v oav x)
NMETREA
(%5 v 5%)
ENEN

IADS — Lecture 28 — slide 18

Example: recursive backtracking

(% v 1) o
(% v 3D
(X, v % v X3)
(X v %3)
(e v x3)
(X v %oV Xg\/"‘(—)
(X2 v 3y)
(;"n V"“_‘u\
(3% v 3%)
2 emrkj (o eMp(‘j (l\\rg?‘ﬂ

IADS — Lecture 28 — slide 19

Example: recursive backtracking

(% v g o

NES AN
(B v % v Xa)

(Xy i3
(xa v x3)

(ﬁ-fhvx',vﬁr)
(X3 v 23 v)
(CETA
(% v 3%

v (X v 30

IADS — Lecture 28 — slide 20

Example: recursive backtracking

(% v g e
NELTTEN
vV (Bov % v X3)
v (Xav i3
* (e, v x3)
KA X V Xy v)
V (X v 3 v xy)
(3, v 7¢0)
(3G v 3)
\/(l\vi.ﬂ

IADS — Lecture 28 — slide 21

Example: recursive backtracking

(% v) o
NELTTEN
v (F v % v Xa3)
\/(9—(1\532_3\
Cs emply O ¥ Q)
A K *a V Xav)
. \/(‘x_zv)‘-‘svx.,\
(% v 5
V(% v 3%
\/(l\v'?c‘ﬂ

IADS — Lecture 28 — slide 22

Example: recursive backtracking

(% v) o
NES TN
EERERED
\/(3—(1‘:91_3\

* (e v x3)

(K Fa V X v)
Vv (xa v sy i)
(CETA
(% v 3%

v (X v 30

IADS — Lecture 28 — slide 23

Example: recursive backtracking

(% vy o
\/(qu f3\
V(B v % v X3)
V(X v %3
* \/(\’&k‘/ x3)
KT X2 V Xav)
V(X v v oxy)
(e v 26
(% v %)

v~ (1\\(7?&'\

c.
7 ey ¢, enply

IADS — Lecture 28 — slide 24

Example: recursive backtracking

% v g o

LT EN

vV (F v % v X3)

v ;1v 373\
/(‘mq(u x3)

\/(x(w;.lvxgv%..)
vV (xqv s v o)
NECRERN

(. VA% v %)

7Y Coenpty St e TN

IADS — Lecture 28 — slide 25

Definitions

We work with respect to a general SAT formula ® = G /\... C,, where each of
the C; contains between 1 and n literals over the variables {x1,...,x,}.

» A unit clause is a clause which contains exactly one literal
(for example, C; = (x2) or G; = (x7))

» A pure literal is defined with respect to the whole collection of clauses: the
situation when a logical variable x; appears with only one polarity, either

» only appearing as the positive literal x; ...
» or alternatively only appearing as the negative literal X;

(but not with both signs)

» Both definitions apply with respect to “active” clauses/literals in a partial
assignment (some variables set), as well as the original CNF.

IADS — Lecture 28 — slide 26

Some observations

We can make some observations to improve recursive backtracking:

unit clause If ® contains a unit clause (£), then there is only one possible
option for setting the underlying variable in a fully Satisfying
assignment:

If {is x;, then set x; < 1, else if { is x;, set x; « 0.

pure literal If we have some variable x; that always appears with the same
polarity (always as x;, or alternatively always as X;) ... then we
may assume we set x; is set to its polarity in a satisfying
assignment.
There might also be a satisfying assignment setting x; in conflict
with its polarity, but it cannot hurt to match the polarity.

Applying these rules will alter the @, removing some clauses (unit clause) or
reducing the number of literals in other clauses.
We should iterate

IADS — Lecture 28 — slide 27

Davis, Putnam, Logemann, Loveland (DPLL)

Algorithm DPLL(® = G A ... A Cp)

—_

if every literal in @ is “pure” then return T
else if @ contains an empty clause then return F
else
while we have some “unit clause” (£) in ®
if ({is x;) then @ « ®(x; + 1)
else if ({ is x;) then ® « @ (x; « 0)
while we have some “pure literal” £ in @
if (Lis x;) then @ «— O(x; + 1)
else if ({ is x;) then ® « ®(x; « 0)
Choose a undetermined variable x; of @ how?
11. return (DPLL(®(x; « 0)) or DPLL(D(x; « 1)))

© 0N ok WD

—
e

®(x; «+ 0) eliminates the clauses that contain Xx; (now satisfied), and deletes
any x; literals inside individual clauses of @ (clauses become harder to satisfy).
@ (x; « 1) is symmetric.

IADS — Lecture 28 — slide 28

Choosing a variable to “split” on

The process of forking-off DPLL(®(x; «+ 0)) and DPLL(®(x; < 1)) is called
splitting on x;.
There are different ways used to choose the next x;:
» Any variable still active in the “as-yet-unsatisfied” clauses (our approach).
» Variable that appears in the most clauses.
» Variable x; that a lot, mostly with one polarity (match that polarity)
» Any literal in the shortest clause.
» The variable x; with the highest weighted sum of clause sizes

S22 MG xi € G,IGI = kY]

These are all heuristics - will work well on some instances of SAT, but may be
poor choices for other examples.

IADS — Lecture 28 — slide 29

Impact

Running time of DPLL:
» The bound of O(2" - |d|) still applies.

» Running-time in practice is much much better than this.
» Proving improved upper bounds:

Can't really hope for significant improvements (SAT being NP-complete).

DPLL said to be “a collection of algorithms” (the different heuristics for splitting).

DPLL forms the basis of many practical “SAT solvers” like GRASP and Chaff.

IADS — Lecture 28 — slide 30

Further study

Viewing:
The "Sudoku problem™” can also be addressed via recursive backtracking.

Doing:
Run the DPLL backtracking algorithm on the example from these slides.

You will notice it is much quicker than the naive backtracking algorithm
(especially on the x; «— 0 branch).

IADS — Lecture 28 — slide 31

