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Implications of NP-complete status

When prove a problem is NP-complete, we no longer expect to be able
to design polynomial-time algorithms to generate exact solutions (to
the Decision problem or to an Optimization version)

What are our options?

I Heuristic methods (“rules of thumb”) that might not guarantee good
results, but behave well in practice.

I Might there be a polynomial-time algorithm to search for an approximate
solution rather than an exact one? (L25)

I Brute-force methods that run in exponential-time (today)

I Recursive backtracking (today)

Today we mostly dealing with the search version of the NP-complete problem -
though we will resolve the decision question too.

We will demonstrate our methods wrt SAT.
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“Brute force”

Might not have studied it formally but probably we know what it means:

“try all possibilities”

If our propositional formula is in CNF over n logical variables, then there are 2n

different assignments to iterate through.

We have Φ = C1 ∧ . . .∧ Cm

Consider a specific test assignment x = x1 . . . xn ∈ {0, 1}n

I Each clause Cj can be checked for satisfiability wrt x in time O(|Cj |).

I The formula Φ can be checked for satisfiability in
time

∑m
j=1 O(|Cj |) = O(|Φ|).

So the full “brute force” algorithm could be carried out in O(2n · |φ|) time.

For a 3-CNF formula this would be O(2n ·m) time
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Recursive backtracking (basic algorithm)

We set-up the exploration of the search space to exploit shared properties of the
collection of the assignments x ∈ {0, 1}n.

Work with respect to a “current partial assignment” b = bi | i ∈ I.

Algorithm SAT-backtrack(Φ = C1 ∧ . . .∧ Cm, I,b)

1. if (m = 0) then return T

2. else if Φ contains an empty clause then return F

3. else choose an unassigned variable xi (i ∈ [n] \ I) how?

4. Φ ′ ← Φ(xi ← 0)
(simplifying Φ ′ based on this new assignment)

5. if SAT-backtrack(Φ ′, I ∪ {i },b · 0)
6. then return T

7. else Φ ′ ← Φ(xi ← 1)
(simplifying Φ ′ based on this new assignment)

8. return SAT-backtrack(Φ ′, I ∪ {i },b · 1)
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Example: recursive backtracking

We take Φ over 4 variables {x1, x2, x3, x4} with the 10 clauses

Φ = (x1 ∨ x2)∧ (x1 ∨ x̄3)∧ (x̄1 ∨ x̄2 ∨ x3)∧ (x̄2 ∨ x̄3)∧ (x2 ∨ x3)

∧(x1 ∨ x2 ∨ x3 ∨ x4)∧ (x̄2 ∨ x3 ∨ x4)∧ (x̄1 ∨ x̄4)∧ (x̄3 ∨ x4)∧ (x1 ∨ x̄4)

We work through this example in the following slides.
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Example: recursive backtracking
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Example: recursive backtracking
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Example: recursive backtracking
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Example: recursive backtracking
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Definitions

We work with respect to a general SAT formula Φ = C1 ∧ . . .Cm where each of
the Cj contains between 1 and n literals over the variables {x1, . . . , xn}.

I A unit clause is a clause which contains exactly one literal

(for example, Cj = (x2) or Cj = (x̄7))

I A pure literal is defined with respect to the whole collection of clauses: the
situation when a logical variable xi appears with only one polarity, either

I only appearing as the positive literal xi . . .
I or alternatively only appearing as the negative literal x̄i

(but not with both signs)

I Both definitions apply with respect to “active” clauses/literals in a partial
assignment (some variables set), as well as the original CNF.
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Some observations

We can make some observations to improve recursive backtracking:

unit clause If Φ contains a unit clause (`), then there is only one possible
option for setting the underlying variable in a fully Satisfying
assignment:

If ` is xi , then set xi ← 1, else if ` is x̄i , set xi ← 0.

pure literal If we have some variable xi that always appears with the same
polarity (always as xi , or alternatively always as x̄i ) . . . then we
may assume we set xi is set to its polarity in a satisfying
assignment.

There might also be a satisfying assignment setting xi in conflict
with its polarity, but it cannot hurt to match the polarity.

Applying these rules will alter the Φ, removing some clauses (unit clause) or
reducing the number of literals in other clauses.
We should iterate
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Davis, Putnam, Logemann, Loveland (DPLL)

Algorithm DPLL(Φ = C1 ∧ . . .∧ Cm)

1. if every literal in Φ is “pure” then return T

2. else if Φ contains an empty clause then return F

3. else

4. while we have some “unit clause” (`) in Φ

5. if (` is xi ) then Φ← Φ(xi ← 1)

6. else if (` is x̄i ) then Φ← Φ(xi ← 0)

7. while we have some “pure literal” ` in Φ

8. if (` is xi ) then Φ← Φ(xi ← 1)

9. else if (` is x̄i ) then Φ← Φ(xi ← 0)

10. Choose a undetermined variable xi of Φ how?

11. return (DPLL(Φ(xi ← 0)) or DPLL(Φ(xi ← 1)))

Φ(xi ← 0) eliminates the clauses that contain x̄i (now satisfied), and deletes
any xi literals inside individual clauses of Φ (clauses become harder to satisfy).
Φ(xi ← 1) is symmetric.
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Choosing a variable to “split” on

The process of forking-off DPLL(Φ(xi ← 0)) and DPLL(Φ(xi ← 1)) is called
splitting on xi .

There are different ways used to choose the next xi :

I Any variable still active in the “as-yet-unsatisfied” clauses (our approach).

I Variable that appears in the most clauses.

I Variable x1 that a lot, mostly with one polarity (match that polarity)

I Any literal in the shortest clause.

I The variable xi with the highest weighted sum of clause sizes∑n
k=2 2−k |{Cj : xi ∈ Cj , |Cj | = k}| .

These are all heuristics - will work well on some instances of SAT, but may be
poor choices for other examples.
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Impact

Running time of DPLL:

I The bound of O(2n · |φ|) still applies.

I Running-time in practice is much much better than this.

I Proving improved upper bounds:

Can’t really hope for significant improvements (SAT being NP-complete).

DPLL said to be “a collection of algorithms” (the different heuristics for splitting).

DPLL forms the basis of many practical “SAT solvers” like GRASP and Chaff.
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Further study

Viewing:
The “Sudoku problem” can also be addressed via recursive backtracking.

Doing:
Run the DPLL backtracking algorithm on the example from these slides.

You will notice it is much quicker than the näıve backtracking algorithm
(especially on the x1 ← 0 branch).
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