
Informatics 2 – Introduction to Algorithms

and Data Structures

Lab Sheet 4: Greedy Algorithms in Python

(and some Dynamic Programming)

week 2, semester 2: 20th-24th January 2025

In this Lab Sheet, we will get some practice in writing programs to implement some of
the Greedy Algorithms (and some basic dynamic programming) we are currently seeing
in lectures. Most of the basic concepts you need to develop implementations have been
introduced in earlier Labs - how to define arrays (including multi-dimensional arrays), print
functionality, and timing-of execution using timeit.

The specific problems that we consider in this sheet are Single-source shortest paths (solved
by different variants of Dijkstra’s Algorithm) and coin-changing (addressed by direct recur-
sion, then dynamic programming). Dijkstra’s algorithm was covered in detail in lecture 16.
Coin changing was introduced in lecture 17 and the dynamic programming algorithm will
be shown in lecture 18 (on Tuesday 22nd January) - however, it should be possible to work
on the implementation of Dyn-Coins at the end of L18 straight away.

Please ask your demonstrator if you are struggling with anything.

1 Dijkstra’s Algorithm

Lecture 16 gave two implementations of Dijkstra’s Algorithm:

• DijkstraSimple (slide 24), where we compute the optimal fringe edge using a straight-
forward “double loop” evaluation over all u ∈ S and all (u, v) ∈ E(G) where v 6∈ S.
This algorithm has a running-time of O(mn).

• Dijkstra (slides 28-29), which uses a (Min) Heap data structure to implement a more
sophisticated version of the algorithm, with each iteration only considering the new
fringe edges (u, x) for the most-recently added fringe vertex u. This implementation
of Dijkstra is known to have running-time O((n + m) log(n)).

In this section of Lab4, you are asked to implement both these methods. You are also
asked to implement an init method which reads in file input and encodes this into an
Adjacency list representation - using an Adjacency list is important, as this is necessary to
achieve the stated running times above.
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1.1 File input

We will assume that the format of input files are organised so that every line of the input
includes 3 items separated by whitespace:

u v w

This line should be interpreted to mean that “There is an edge (u,v) with weight w”. I
have not said whether this is directed or undirected, and that information is not given in the
input file - the directed/undirected status of an input file will be communicated by setting
a directed parameter to True or False when calling the init constructor.

We will assume by default that the vertex set V will always be 0, 1, ...., n-1, to match
the default indexing of arraylists and other data structures in Python. Therefore we assume
that the 1st two items u and v along a line of the input file are always of type int. For the
w entry, you may chose whether you will require this to also be int, or whether to work
with the more general float - it is up to you.

Your first task as part of this coursework is to complete the constructor method:

def init (self,n,directed,filename):

The key attribute that needs to be set-up in your implementation of the constructor is
self.adj list.

• For self.adj list, we have already initialised this to be a dictionary with empty
lists as the (initial) values. As we read the input file, and process input lines, we will
want to add items (v,w) to the list self.adj list[u] to represent that “there is an
edge (u,v) with weight w”.

• If the parameter directed is True, then each line of the input file requires us to add
one edge to self.adj list (add (v,w) to the list self.adj list[u]).

However, if we have an undirected input graph (directed is False), then we need to
add an edge to both self.adj list[u] and self.adj list[v].

• Much of the effort to achieve the implementation of the constructor is the reading of
the input file. You will need to make use of open, readlines and close (for the file)
and split (to split the input lines).

• The 1st and 2nd entry on each line must be input as int, it is up to you whether to
use int or float for the 3rd item.

• The filename should be supplied in quotes, and remember that it must be resident in
the director where you are running Python. Here is an example of me initialising with
the file 7nodes.

Python 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import dijkstra

>>> g=dijkstra.Graph(7,True,"7nodes")

As an initial testing file, I have supplied a file called 7nodes which encodes the edges of our
example graph from L16. Given that we need to have nodes named 0, 1, ..., I have
needed to rename the nodes of the graph. The correspondence is as follows:

s ≡ 0, a ≡ 1, b ≡ 2, c ≡ 3, d ≡ 4, e ≡ 5, f ≡ 6
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1.2 DijkstraSimple, O(mn) running time implementation

Now we are ready for implement the simple, less efficient, version of Dijsktra’s algorithm.
DijkstraSimple is presented on slide 24 of L16. At each iteration, we compute the optimal
fringe edge using a straightforward “double loop” evaluation over all u ∈ S and all (u, v) ∈
E(G) where v 6∈ S.

dijkstra.py contains a starting implementation of the function

def DijkstraSimple(self,s):

The few lines written are there to initialise the key variables and arrays that are crucial for
the method (you will want to add some others). I have also included the return at the end
to show the order in which we want to return the completed arrays (please edit out during
debugging if that helps).

Note that s is the source node for the call.

The function should return the arraylist of shortest path distances dists (from v) as well
as the arraylist of pointers pi.

Some useful notes:

- You will need to keep track of the nodes in S and those in V −S during the execution
of the algorithm. You may use the Python set data type for this. A list can also
be used, but the set is closer to the pseudocode for the algorithm, as S and V − S
are sets.

Once you have a working version of DijkstraSimple, next step is to test on some real
inputs. You may want to experiment with 7nodes in order to compare to the solution we
solved in L16. Here are the results from my own implementation.

[archlute]mcryan: python

Python 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import dijkstra

>>> g=dijkstra.Graph(7,True,"7nodes")

>>> g.DijkstraSimple(0)

([0, 4.0, 7.0, 4.0, 3.0, 11.0, 9.0], [None, 4, 1, 0, 0, 4, 4])

Two things to note about my results:

• The reason the values in dists are floating-point is because I took the decision to
allow weights to be float. Entirely up to you if you prefer int.

• The choice of fringe edge to add b (now 2) into S was different from the choice we
made in class (remember we had 2 competing options at this iteration).

1.3 Dijkstra using a Heap

The second implementation for Dijkstra’s method was given in slides 28-29 of L16, and uses
a (Min) Heap data structure, together with more careful consideration of fringe edges, to
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achieve running-time O((n + m) log(n)).

In this task, we ask you to achieve an “approximate” implementation of the Heap version
Dijkstra. You are not required to explicitly code up Relax as a separate method, that is up
to you (and in my own implementation I wrote all the code in the main method).

In implementing Heap Dijkstra, you need to make use of the Python heapq library, which
is documented at the following website.

• heapq differs somewhat from our presentation in Lecture 11 (as we mentioned at the
time, and in the related tutorial). For one thing, it is a Min Heap (which helps us, as
we need Min for Dijkstra).

• The main methods you will need to exploit in implementing Dijkstra will be heappush

(corresponding to insertItem) and heappop (corresponding to extractMin).

There is one problem with using heapq, which is that heapq (like most basic implementations
of a Heap), does not include a reduceKey operation.

• Your “workaround” to this should be to instead “re-insert” the node v again into the
Heap, with the improved key value (the better d[v]). You will need to make some
other changes to the implementation to get everything to work “as a whole”.

• It is possible to re-engineer heapq to include a “true to O(log(n))” reducekey. However,
it requires us to introduce a new index into the Heap that must be maintained by all
methods, and hence requires a good amount of re-working of the heapq library.

I didn’t have time to do this. If anyone would like to have a go, please do! (and chat
with me)

dijkstra.py contains a starting implementation of the function

def Dijkstra(self,s):

The few lines written are there to initialise the key variables and arrays that are crucial for
the method (you will want to add some others). I have also included the return at the end
to show the order in which we want to return the completed arrays (please edit out during
debugging if that helps).

Note that s is the source node for the call.

Once you have a working version of Dijkstra, you can again experiment with 7nodes in
order to compare to the solution we solved in L16. Here are the results from my own
implementation (exact same as for DijkstraSimple).

[archlute]mcryan: python

Python 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import dijkstra

>>> g=dijkstra.Graph(7,True,"7nodes")

>>> g.Dijkstra(0)

([0, 4.0, 7.0, 4.0, 3.0, 11.0, 9.0], [None, 4, 1, 0, 0, 4, 4])
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2 Coin changing

In this section we ask you to code-up algorithms for the “coin changing” problem, and run
some experiments comparing the run-times with different implementations.

The template file coin changing.py is a very minimalist starting point, which essentially
has some method declarations, and little else. The intention is that you will develop the
code in an imperative way, without making use of object-oriented structure. Your methods
will work with respect to a global variable c list which can be set to the specific coin
system you are working with (c list will be a list containing the different coin values, in
increasing order).

2.1 Finding the minimum number of coins (recursively)

In Lecture 18, we presented a recurrence for solving the coin-changing problem on slide 10.
It is straightforward to use this recurrence to quickly implement a recursive method to
compute the minimum possible number of coins for a given value v. You should implement
a recursive solution to find that minimum number of coins as the following method:

def fewest_coins(v):

Of course, we really want to know the/a specific collection of coins which will realise this
“minimum possible number of coins”. This can also be solved recursively, with the output to
this method being a list of coin values. You should implement this in the following method:

def fewest_coins_list(v):

2.2 “Memoization” to improve running-time

The concept of memoization has come up a couple of times during lectures, and in Live
Discussions. This concept is an alternative way of avoiding repeated computation of sub-
problems - instead of explicitly identifying all potential subproblems that might ever arise
(and building a table with all these solutions computed in a careful order), instead we could
apply a recursive approach, but make a copy (a “memo”) of the result for each subproblem
every time it is computed for the first time. The recursive algorithm will then check the
memo for a stored solution before it makes the recursive call(s) it would normally make.

For a single-argument function such as the two above, we can use the exact same memoiza-
tion function as we saw in the lectures.

def memoize(f):

memo = {}

def check(v):

if v not in memo:

memo[v] = f(v)

return memo[v]

return check
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coin changing.py contains this function, as well as (commented-out) calls to exploit mem-
oize with the methods you have now code-up for solving coin-changing.

Try some example calls, and use timeit to investigate the difference in running-times be-
tween the näıve recursion and the memoized variant.

2.3 The dynamic programming approach

We saw a dynamic programming algorithm Dyn-Coin to solve this problem at the end of
lecture 18, both finding the minimum number of coins and also constructing a set of coins
to achieve this. Your next task is to implement dynamic programming solutions for the
methods:

def fewest_coins_dp(v):

def fewest_coins_list_dp(v):

Mary Cryan, 19th January 2025
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