Informatics 2 — Introduction to Algorithms

and Data Structures
Solutions for Tutorial 5

1. We are concerned with the best -case running time for QuickSort. We work with n of

the form 2" — 1 to help ensure equal splits (plus an excluded item at “split”) can be
achieved recursively.

Algorithm QuickSort(A,1,7)

b

(c
(d

)
)
)

(a) if i < j then
(

split < partition(A, 7, j)
quickSort(A, i, split — 1)
quickSort(A, split + 1, j)

Algorithm 1

(a) Give an actual example of an input array where QuickSort takes only O(nlg(n))

time to sort. I am only really asking what kind of pattern will cause the array to
be split into (roughly) half repeatedly.

The best case for QuickSort occurs when the depth of the recursive structure (the
levels) is O(lgn). We must split the current subarray roughly in half every time
(recursively). Assume the keys are 1,2,...,n, where n = 2k — 1 for some k.
Intuitively, in order to partition into two equal halves at the top level, we would
expect the last element in the original array to be halfway. Careful consideration
of partition will show we need (n+1)/2 as the pivot. Otherwise, (for the first call)
we don’t mind where the other elements are input, since partition always takes
linear time to execute. However, for recursive calls to partition, it will matter
greatly how the other elements were placed in the array.

The best way to construct this array is to build from the bottom up.

Suppose n = 3. We want 2 in the final position. We will set A to be 1, 3,2. Note
that on the call to partition, value 1 (less than 2) is first swapped with itself
and then j stops at value 3, and then 3 (the value at i 4+ 1) is swapped with the
value 2 to give 1, 2,3 and split index 2.

Suppose n = 7. The way to build the n = 7 array is to think about joining two
copies of the n = 3 arrays, then tweaking them. So we take 1,3,2 followed by
5,7,6, and the middle value 4 at the end. However, recall that we will swap the
pivot 4 with 5 as the last step of Partition, and this would give 7,6, 5 for the right
subarray, which is not the right pattern for the recursive call: in fact we want to

create the n = 7 array as 1, 3,2 followed by 6, 5,7, followed by 4: the swap of 4
with 6 at the end will then create a right subarray of 5,7,6. Overall we have the
pattern

1,3,2,6,5,7,4.

Testing this with partition, i = j will happen (before j is moved right) for each
of the first three items 1, 3,2, each of these items “swapping with itself” and
then j moving right. Then j will continue right on each of the large items 6, 7, 5,
with ¢ remaining stationary. At the end, 7 will be moved right so value 6 can
be swapped with the pivot, to give a split into 1,3,2 and 5,7,6. These have the
right pattern for n = 3.

The procedure is the same for n = 2 — 1, k > 3:

e Copy the (n — 1)/2 length array, shifting all keys upwards by (n+ 1)/2.

e Concatenate the (n —1)/2 length array, followed by item (n + 1)/2, followed
by the shifted copy;

e Swap the middle item (n+1)/2 with the last item, in order to make (n+1)/2
the pivot.

For example, for n = 15, we would get the following array:
1,3,2,6,5,7,4,12,9,11,10,14,13,15,8

Show that the best case running time will always be at least cnlgn, for some
constant ¢ > 0.

answer: The key to QuickSort is partition, which always takes linear time, ie, at
least b(j — i + 1) time for some constant b > 0.

We can give an informal (but accurate) solution by reasoning about the work
done at various “levels” of the recursion tree of quicksort. First note that if we
consider the first 1g(n) —4 “levels” of the recursion tree, the lowest level can have
been broken into, at most, 2" —4 = n/16 different subarrays. This is clearly
also true for all levels from level 0 (initial recursive call) to level 1g(n)—4 inclusive.
Even allowing for the fact that we will crop out ng)% 2h < 2l8(M)=3 = p /8
“pivots” from the various calls on these levels, at least 7n/8 items still belong to
subarrays of length > 2 throughout. Therefore the total work done by (various
calls to) partition across level ¢ (for any 0 < ¢ < lg(n) — 4) is Q(7n/8) = Q(n).
Taking the lg(n) — 4 levels together, the total work done by quickSort is at least
Q(nlg(n)).

Note that sometimes we can do a more formal argument to achieve a proof by
induction but these can be fiddly (and involve differentiation). I used to give an
alternative proof but it’s made more troublesome by this particular variant of
QuickSort which crops out the “pivot” each time, so I am skipping that alterna-
tive.

2.

(a)

(b)

(d)

Here are the representations:

0{1(1]010[0]0|0
1(0/1}1]1,0]0]0
1{1/0j0j1|0]1]|1
0{1/0]0121(0]0)0
0Oj{1(1j140[1]0|0
0{0(0|0|1|0]|0|0
0j0f1j010[0]0 1
0ojof1j040(0|1/|0

Table 1: The adjacency matrix representation of G.

[l NN I R Y
A
~

N
ISR IR Il RN =N

[0 BN

[ofo]s]e]v][-]e]

BF'S starts at node 0 (the only node in level 0). The exploration of bfsFromVertex
will first add the nodes 1 and 2 to the Queue (if that order), these being the “level
17 nodes (Q becomes 1, 2). The next iteration De-Queues 1 and explores its
adjacent edges, ignoring the edge to 0 because that one was previously “visited”
(Queue becomes 2, 3, 4). The nodes 3 and 4 will belong to level 2 of the search
tree. Next, the method De-Queues node 2 and explores all four adjacent edges,
pushing non-visited neighbours 6 and 7 onto the Queue(Q becomes 3, 4, 6, 7). 6
and 7 are also level 2.

By now almost all nodes have been visited. The De-Queueing of node 3 actions
no changes, but the De-Queueing of 4, causes node 5 to become visited, and the
only node on level 3.

DFS starts at node 0 (the only node in level 0), and we run a similar execution,
except using the Stack instead of the Queue. I leave details to tutors. Be careful
with the order of adding items to Stack (according to Adjacency list order) and
note that this means that adjacent items to u will then be “popped” in the
opposite order. It’s a subtle thing that makes a difference.

We observe that the search trees constructed by BFS and DFS are different.

3. We use proof by contradiction to show this result. To that end, we assume the opposite

of what we want - we assume there is some edge (u,v) € E such that |L(u)—L(v)| > 1,
where L(-) denotes the level of the node. Suppose that u is the node with the lower
L(-) value. In that case, we know that u was added to the BFS search tree, and
EnQueued onto Q, at a point earlier than v (this is not true for DFS, but it is true
for BFS). This means that v was DeQueued before v was, and hence that on u’s De-
Queueing, that v gets considered in the exploration of adjacent edges of u. There are
two possibilities - either that v is not visited yet, and gets marked as visited at this
point (in which case L(v) < L(u) + 1), or that v has become visited in the period

after u being visited, in which case L(v) € {L(u), L(u) + 1}. In either case this will
give |L(u) — L(v)| < 1, so we have our contradiction.

. Suppose we are given an undirected graph G = (V, E) and asked to determine whether
the graph is bipartite - that is, whether V can be partitioned into two subsets V =
Vi W Vs such that every edge e = (u,v) has one endpoint in Vi and one endpoint in Vs.

Show how to answer this question in O(n +m) time.

answer: Let C' C V be some maximal connected component of G (so the induced
subgraph on C' is connected, and there is no larger subset ¢’ O C which is connected).
We note that G is bipartite if and only if each of the maximal connected components
is bipartite. Now consider some vertex v in component C, and imagine carrying out
breadth-first search from v. We take the convention that we will label this starting
vertex “blue”. Then we will perform a variant of bfsFromVertex(v) where we colour
the nodes on each level as we go, alternating between “red” and “blue” at successive
levels (so the neighbours of v will get colour “red”, and so on). As we carry out
the breadth-first expansion, it may be that case that some neighbours of the current
node v have already appeared in the bfs tree (and hence will not be added) - for those,
we must check that their previously-allocated colour is the opposite of v’s. We carry
out this process until there are no new vertices generated.

If this process terminates, and for every v, and every neighbour w of v that was
previously visited (and coloured) the already-assigned colour of w is opposite to v,
then the connected component containing v is bipartite.

Running this variant of bfs allows us to recognise whether the entire G is bipartite,
and the running time is the same as for bfs, ©(n + m).

. Consider the alternative method for performing topological sorting on a directed acyclic
graph G = (V, E): repeatedly find a vertex of in-degree 0, output it, and then remove
it and all of its outgoing edges from the graph.

(a) How can you implement this so that the entire algorithm will be O(|V| + |E|)?

answer for (a): To implement this, we will maintain an adjacency list data struc-
ture A (A[v] will point to the list of vertices w such that (v, w) € E) to represent the
current digraph (with some arcs removed), plus an auxiliary array B of length n = |V/|
such that Bv] is the number of incoming edges to v. We will also maintain a list Z of
unprocessed “in-degree 0” vertices. Note that we will need to initialise B at the start
of our algorithm, and we can do this by first initialising all the B[v] values to 0 (O(n)
time), then processing each of the A[v] lists one-by-one, adding 1 to B[w] whenever
we see w in an adjacency list. This processing takes) _, ©(out-degree(v)), which
is ©(m) overall. After this is done, B[v] stores the in-degree of v in the original graph,
for every v € V.

Next we do a linear pass (O(n) total) through B searching for vertices which have Blv] =
0, adding any such v to Z as we go.

Then we iteratively choose any (the first) item v from L, delete it (O(1) time for a
list), and then examine the items in A[v] one-by-one; for every w in the list A[v], we
decrement the value of Blw] by 1, and if this makes Bfw] zero then we also add w
to L in O(1) time. Processing the entire list Afv] this way takes ©(out-degree(v))
time in total. We only do this work when we remove v from L, which can happen at
most once (once B[v] becomes 0 we have exhausted all incoming edges and will never

consider B[v] again). Hence overall, we could at most take }_ ©(out-degree(v))
time, which again is ©(m) overall.

Therefore we take ©(n) + ©(m) + ©(n) + ©(m) time, which is O(n + m).

(b) How will you detect that the graph has cycles?

answer to (b): The graph is acyclic if and only if we can eliminate all edges from
the graph by following the rule of delete outgoing edges of a vertex with (current) in-
degree 0. We will notice that the graph has cycles if at some point the list L contains
no vertices to work-with, but Afw] is non-empty for some vertices w.

Design an algorithm to sort to sort and return the least k elements of a list that uses
the same partition subroutine of quicksort. How does the worst case execution time of
this algorithm compare to that of quicksort?

answer: The algorithm is similar to quicksort, but where quicksort always recurses on
the upper partition, partialQuicksort only recurses when the index of the split is less
than k — 1 (assuming we have 0 as the first index).

Algorithm partialQuicksort(A, i, j, k)

b

(
(d

(e

o

)
)
)
)

(a) if i <jand k>0 then
(

split « partition(A, i, j)
partialQuicksort(A, i, split — 1, k)
if (split —i) < k then
partialQuicksort(A, split + 1, j, (k + i — split))

Algorithm 2

SHOCKINGLY, the worst-case running-time of this is the same as worst case for quick-
sort (£2(n?)), EVEN WHEN k IS SMALL, SAY k = 2. To see this consider the input
array

1,2,3,...,n—1,n.

We will show that for the first n/2 iterations of partialQuicksort, partition “removes”
one extra element each time. This one extra element is always a high element, making
the rhs of the partition. Therefore we will not enter lines (d)/(e) of partialQuicksort,
and will only have to track one recursive call. The following invariant (IN) will be
maintained after each of the first n/2 iterations:

(IN) After the hth iteration, the (single) recursive instance of partialQuicksort is:

1,2,3,...,n—h.

Clearly (IN) is satisfied at the beginning, after 0 iterations. Assuming (IN) is satisfied
after step h, and h < n/2, then on the next (h + 1th) iteration of partition, n — h
is the pivot. All items are smaller than the pivot so partition will do lots of “fake
swaps” (item A[j] swapped with itself) before stopping with j and ¢ both pointing
at n — h — 1. Then the final value (the pivot n — h) gets swapped with itself and
the index/value n — h is returned as the “split”. Hence we split into the subarray

1,2,3,...,n—h—1 plus the empty array, with n— h returned as the split. The pattern
of our main (sub)array has not changed, hence (IN) is now satisfied for h + 1.

Each of the first n/2 iterations is guaranteed to take place - after all, we still have
not isolated the elements 1 or 2. For each of these first n/2 calls, the array contains
at least n/2 elements, hence partition takes Q(n) time. In total we have at least n/2
recursive calls, taking (n/2)Q(n) in total, which is Q(n?).

