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The formal definition  
of a (strategic) game

Definition: A game in normal or strategic form is a tuple 
 where


1.  is a set of players (sometimes called “agents”).


2. For each player , there is a set  of (pure) strategies. 


A vector  is called a  
strategy profile.


3. For each player , there is a payof (or utility) function 
 which assigns a numerical value  to player  

for a given strategy profile .

(N, S1, S2, …, Sn, u1, u2, …, un)

N = {1,…, n}

i ∈ N Si

(s1, s2, …, sn) ∈ S1 × S2 × … × Sn = S

i ∈ N
ui : S → ℝ ui(s1, s2, …, sn) i
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Games Played Sequentially

In normal form games, the assumption is that the players pick their 
entire strategies independently (“simultaneously”). 

In reality, games are often played in “turns”: a player chooses a 
“move” and another player reacts with another “move” and so on.

Examples: Chess, Poker, Tichu, most board games

More examples: Negotiations, bargaining, politics, life

We would like a mathematical model that captures these situations.
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Extensive Form Games
Definition: A (perfect information) extensive form game in extensive form is a tuple 

 where


1.  is a set of  players.


2.  is a set of actions.


3.  is a set of nonterminal choice nodes.


4.  is a set of terminal nodes, 


5.  is the action function, mapping to each choice node a set of possible actions.


6.  is the player function, which determines which player takes an action at each choice node.


7.  is the successor function, which maps a choice node and an action to another 
node (choice or terminal).


8.  is a utility function for each player , mapping terminal nodes to real-valued utilities.

G = (N, A, H, Z, χ, ρ, σ, u)

N n

A

H

Z Z ∪ H = ∅

χ : A → 2A

ρ : H → N

σ : H × A → H ∪ Z

ui : Z → ℝ i
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In the example before, we had 
 and  

 

i

Si i
Si = ∏

h∈H:ρ(h)=i

χ(h)

S1 = {2 − 0,1 − 1,0 − 2}
S2 = {(Yes, Yes, Yes), (Yes, Yes, No), (Yes, No, Yes), …}
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Equilibrium in Extensive 
Form Games

Theorem (Zermelo 1913): Every perfect information extensive form game 
always has a pure Nash equilibrium.

Intuition: Players take turns, and everyone gets to see everything that 
has happened thus fur, so it does not seem that randomisation is 
necessary. 

We also have a (naive, exponential time) algorithm for finding (pure) 
Nash equilibria in perfect information extensive form games. 

(Which one?)
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We can actually find three!

Is this a coincidence?

Let’s look at those on the 
game tree.
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Solution Concept #5: 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Subgame Perfect Equilibrium: A (pure) strategy profile 
 such that, if we take the restriction  of  to any 

subgame  of ,  is pure Nash equilibrium of .
s = (s1, …, sn) ̂s s

Ĝ G ̂s Ĝ

This concept eliminates non-credible threats. 



This is a PNE
2

1

0

-1 −∞

0

1 −∞



This is a PNE
2

1

0

-1 −∞

0

1 −∞

Is this subgame perfect?



This is a PNE
2

1

0

-1 −∞

0

1 −∞

Is this subgame perfect?



This is a PNE
2

1

0

-1 −∞

0

1 −∞

Is this subgame perfect?



This is a PNE
2

1

0

-1 −∞

0

1 −∞

Is this subgame perfect?



This is a PNE
2

1

0

-1 −∞

0

1 −∞

Is this subgame perfect?



This is a PNE
2

1

0

-1 −∞

0

1 −∞

Is this subgame perfect?



This is a PNE
2

1

0

-1 −∞

0

1 −∞

Is this subgame perfect?



This is also PNE
2

1

0

-1 −∞

0

1 −∞

This PNE is based on a  
non-credible threat.

“Are you really going to 
blow up the whole world?”



This is also PNE
2

1

0

-1 −∞

0

1 −∞

This PNE is based on a  
non-credible threat.

“Are you really going to 
blow up the whole world?”

Is this subgame perfect?



This is also PNE
2

1

0

-1 −∞

0

1 −∞

This PNE is based on a  
non-credible threat.

“Are you really going to 
blow up the whole world?”

Is this subgame perfect?



This is also PNE
2

1

0

-1 −∞

0

1 −∞

This PNE is based on a  
non-credible threat.

“Are you really going to 
blow up the whole world?”

Is this subgame perfect?



Equilibrium 3: (B, H), (C, E)
1

2 2

1

3 8 5

2 1

8 3 5

10 0

A

C

B

F

H

D E

G

If Player 1 chose , then Player 2 would choose  
 rather than 

(B, G)
(C, F) (C, F)

The only reason why Player 2 chooses  is 
because Player 1 is threatening with a worse action.

(C, E)



Equilibrium 3: (B, H), (C, E)
1

2 2

1

3 8 5

2 1

8 3 5

10 0

A

C

B

F

H

D E

G

If Player 1 chose , then Player 2 would choose  
 rather than 

(B, G)
(C, F) (C, F)

The only reason why Player 2 chooses  is 
because Player 1 is threatening with a worse action.

(C, E)
Is this subgame perfect?



Equilibrium 3: (B, H), (C, E)
1

2 2

1

3 8 5

2 1

8 3 5

10 0

A

C

B

F

H

D E

G

If Player 1 chose , then Player 2 would choose  
 rather than 

(B, G)
(C, F) (C, F)

The only reason why Player 2 chooses  is 
because Player 1 is threatening with a worse action.

(C, E)
Is this subgame perfect?



Equilibrium 3: (B, H), (C, E)
1

2 2

1

3 8 5

2 1

8 3 5

10 0

A

C

B

F

H

D E

G

If Player 1 chose , then Player 2 would choose  
 rather than 

(B, G)
(C, F) (C, F)

The only reason why Player 2 chooses  is 
because Player 1 is threatening with a worse action.

(C, E)
Is this subgame perfect?



Homework

3, 8 3, 8 8, 3 8, 3

3, 8 3, 8 8, 3 8, 3

5, 5 2, 10 5, 5 2, 10

5, 5 1, 0 5, 5 1, 0

(A, G)

(A, H )

(B, G)

(B, H )

(C, E) (C, F) (D, E) (D, F)

Verify that out of those 
three, only  
is subgame perfect. 

(A, G), (C, F)
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Equilibrium in Extensive 
Form Games

Theorem (Zermelo 1913): Every perfect information extensive form game 
always has a pure Nash equilibrium.

Theorem (Kuhn 1953): Every perfect information extensive form game 
always has a subgame perfect pure Nash equilibrium.

Proof: by backwards induction on the depth of the tree of the subgame.
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The proof (sketch)  
of Kuhn’s Theorem

By the induction hypothesis, every such  has a subgame perfect 
PNE, denoted by .

Gwa

swa = (swa
1 , …, swa

n )

Let player  be the player that plays at node . The player will chose the 
action  that maximises her payoff in the game .

i w
a* ∈ Aw Gw

So in the strategy profile for the game , we define  
 

Gw
sw
i = swa

i ∪ {w → a*}
sw
j = swa

j
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So is everything fine and 
dandy? 

It is, if we have the whole game tree as input.

But in many applications we do not really have that.

Imagine that you want to “solve” chess, i.e., to decide if white has a 
winning strategy.

Chess is win-lose-draw game (1: white wins, -1: white loses: 0: there is 
a tie). 

We could solve it using backwards induction to find if the value is 1,-1, 
or 0.

But the chess game tree has about  nodes!10150
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Pruning

Maybe we do not have to consider all “branches” of the tree, i.e., all 
subgames. 

Assume that we have a function Eval  which (heuristically) evaluates 
the “score” of a node (and the subtree rooted at that node). 

(w)

If Eval  we can stop the search at that node, and not explore the 
subtree. 

(w)
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-pruning(α, β)

We will apply the pruning idea to perfect information extensive form, 
zero-sum games. 

Idea: We prune if:

- the maximiser can guarantee score ≥ α

- the minimiser can assume score ≤ β
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Guess the card game

Alice hides a card which is either a 5, or a 10.

Bob guess which one Alice hid. If he guesses correctly, he pays Alice 
the number on that card divided by two in pounds, otherwise Alice pays 
him that amount. 

We can certainly model this as a 2-player zero sum game in normal 
form. 

But this sounds like a sequential game: Alice hides first, and then Bob 
guesses. So we should be able to model it as an extensive form game.  
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Why would Bob ever guess 10 on the left, or 5 on the right?

To accurately model the game, we have to model the fact that 
Bob does not know which card Alice hid!



Extensive Form Games
Definition: A (perfect information) extensive form game in extensive form is a tuple 

 where


1.  is a set of  players.


2.  is a set of actions.


3.  is a set of nonterminal choice nodes.


4.  is a set of terminal nodes, 


5.  is the action function, mapping to each choice node a set of possible actions.


6.  is the player function, which determines which player takes an action at each choice node.


7.  is the successor function, which maps a choice node and an action to another 
node (choice or terminal).


8.  is a utility function for each player , mapping terminal nodes to real-valued utilities.

G = (N, A, H, Z, χ, ρ, σ, u)

N n

A

H

Z Z ∪ H = ∅

χ : A → 2A

ρ : H → N

σ : H × A → H ∪ Z

ui : Z → ℝ i
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RL
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L

Idea: Player 1 does not know whether  
we came from L or from R. The player must choose the same 

strategy in both cases.



Guess the card game
A

B B

5

5

10

1010 5

-2.5 2.5 -5 5



Guess the card game
A

B B

5

5

10

1010 5

-2.5 2.5 -5 5



Guess the card game
A

B B

5

5

10

1010 5

-2.5 2.5 -5 5

Bob now has to guess either 5 or 10 in both cases.



Guess the card game
A

B B

5

5

10

1010 5

-2.5 2.5 -5 5

Bob now has to guess either 5 or 10 in both cases.
Or he can choose a mixed strategy!
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Equilibrium in Extensive 
Form Games

Theorem (Zermelo 1913): Every perfect information extensive form game 
always has a pure Nash equilibrium.

This is not true for imperfect information extensive form games.

These games however always have mixed Nash equilibria.

Why is that?
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From normal form to 
extensive form

Every imperfect information extensive form game can be transformed to 
an equivalent normal form game. 

Every normal form game can also be transformed to an imperfect 
information extensive form game.

We can compute mixed Nash equilibria of imperfect information extensive 
form games using this connection, but

- the transformation might take exponential time

- we don’t know how to find the mixed equilibria for the normal form 
game efficiently.

We will talk more about mixed strategies in II-EFGs next time. 


