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Exercise 1. Assume that you have developed 10 different algorithms for finding mixed Nash equilibria in
games. You would like to test these algorithms on 100 instances. In particular, the running time of an
algorithm on the set of 100 instances is its maximum running time over all instances in the set. You may
assume that for an (algorithm, instance) pair, the running time is always the same.

A randomised algorithm is a probability distribution over your 10 algorithms, i.e., a probability vector
(p1, . . . , p10), where pi for i ∈ {1, . . . , 10} is the probability of selecting algorithm i out of your 10 algorithms.
Every randomised algorithm naturally has an expected running time on an instance, and its running time is
the worst-case expected running time over all instances in the set.

Describe a polynomial-time algorithm for finding the best randomised algorithm for the 100 instances, i.e.,
the one with the smallest expected running time.

Solution 1. We will model the problem of finding the best randomised algorithm as a 2-player zero-sum
game. The maximiser will be the algorithm designer, and its set of pure strategies will be the 10 algorithms
for finding mixed Nash equilibria. The minimiser will be the adversary, and its set of pure strategies will be
the 100 instances on which these algorithms will be tested. The utility of the maximiser given an algorithm
A and an instance I will be u(A, I) = −t(A, I), where t(A, I) is the running time of algorithm A on instance
I.

We know from the lectures that an optimal mixed strategy of the maximiser should maximise the mini-
mum utility of the maximiser against any pure strategy of the minimiser. A mixed strategy of the maximiser
is a randomised algorithm, as defined in the exercise statement, and it’s expected utility is the expected
running time of the randomised algorithm against the instances used by the minimiser. An optimal strat-
egy maximises the minimum possibly such utility, i.e., it minimises the worst-case running time over the
100 instances. Finding an optimal strategy of the maximiser can be done in polynomial time, via linear
programming, as we saw in the lectures.

Exercise 2. Consider the following linear program:

maximise v
subject to v − 2x1 − 7x2 ≤ 0

v − 9x1 ≤ 0
v − 4x1 − 3x2 ≤ 0
x1 + x2 = 1
x1, x2 ≥ 0

A. Write down the dual to this linear program.

B. Describe a 2-player zero-sum game (by writing down its utility matrix) that is consistent with this
linear program computing an optimal strategy of the maximiser and the dual computing an optimal
strategy of the minimiser.

Solution 2.
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A. The dual to the given program is the following:

minimise w
subject to w − 2y1 − 9y2 − 4y2 ≥ 0

w − 7y1 − 3y3 ≥ 0
y1 + y2 = 1
y1, y2, y3 ≥ 0

B. A 2-player zero-sum game that is consistent with the two linear programs is the following:[
2 9 4
7 0 3

]

Exercise 3. Solve the following linear program using the simplex method.

maximise 6x1 + 6x2 + 5x3 + 9x4

subject to 2x1 + x2 + x3 + 3x4 ≤ 5
x1 + 3x2 + x3 + 2x4 ≤ 3
x1, x2, x3, x4 ≥ 0

Show each dictionary and each basic feasible solution produced during the execution of the algorithm.
Explain which variable is the entering variable and which one is the leaving variable and why.

Solution 3. First, we reformulate the linear program by defining slack variables w1 and w2 as below and
constraining their values to be non-negative:

w1 = 5− 2x1 − x2 − x3 − 3x4

w2 = 3− x1 − 3x2 − x3 − 2x4,

giving us the following dictionary:

w2 =

w1 =

ζ =

3

5

− x1

− 2x1

+ 6x1

− 3x2

− x2

+ 6x2

− x3

− x3

+ 5x3

− 2x4

− 3x4

+ 9x4

x1, x2, x3, x4, w1, w2 ≥ 0

We select the origin as our initial feasible solution, giving us

x1 = 0, x2 = 0, x3 = 0, x4 = 0, w1 = 5, w2 = 3, ζ = 0.

Our first observation is that, since the coefficients of ζ are all positive, we can increase our objective function
by increasing any of x1, x2, x3, x4. Suppose we choose to increase x4; i.e., we make x4 our entering variable.
By how much should we increase x4? As much as we can, without violating any of our constraints. From our
dictionary, we see that only constraints which might apply are w1 and w2. In particular, increasing x4 by 5/3
would make constraint w1 go tight; but even before we hit this constraint, we would first hit constraint w2

at x4 = 3/2. So we set x4 = 3/2 and define w2 as the leaving variable of this iteration. Our new, improved
solution is thus

x1 = 0, x2 = 0, x3 = 0, x4 =
3

2
, w1 =

1

2
, w2 = 0, ζ =

27

2
.

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 2



Algorithmic Game Theory and its Applications University of Edinburgh

Now we wish to reformulate our LP so that ζ and the constraints are written in terms of x1, x2, x3 and w2,
rather than x1, x2, x3, x4. For this, we note that the equation for w2 above implies that

x4 =
1

2
(3− w2 − x1 − 3x2 − x3).

Making this substitution into our original LP dictionary above gives us the following updated dictionary:

x4 =

w1 =

ζ =

3
2

1
2

27
2

− 1
2w2

+ 3
2w2

− 9
2w2

− 1
2x1

− 1
2x1

+ 3
2x1

− 3
2x2

+ 7
2x2

− 15
2 x2

− 1
2x3

+ 1
2x3

+ 1
2x3

x1, x2, x3, x4, w1, w2 ≥ 0

We continue on in a similar fashion. From our revised LP, we see that we can increase the value of our
objective function ζ by increasing x1 or x3. Suppose we choose x1 as our entering variable. Looking at
constraints w1 and x4, we see that increasing x1 will hit constraint w1 (our new leaving variable) first at
x1 = 1, since min{1, 3} = 1. This gives the following improved solution:

x1 = 1, x2 = 0, x3 = 0, x4 = 1, w1 = 0, w2 = 0, ζ = 15.

Rewriting ζ and the constraints in terms of w1, w2, x2, x3 using the fact that x1 = 1− 2w1 +3w2 +7x2 + x3

(from w1 in the previous dictionary) gives the following updated dictionary:

x4 =

x1 =

ζ =

1

1

15

+ w1

− 2w1

− 3w1

− 2w2

+ 3w2

− 5x2

+ 7x2

+ 3x2

− x3

+ x3

+ 2x3

x1, x2, x3, x4, w1, w2 ≥ 0

From here, we see that we have two possible entering variables: x2 and x3. Suppose we choose x3 and
increase it until we hit constraint x1 or x4. Since we see from the equation for x1 that this constraint is
infeasible (i.e., there is no positive value of x3 which makes x1 = 0), we know that the leaving vairable must
be x4, with the constraint going tight at x3 = 1. Using the fact that x3 = 1 + w1 − 2w2 − 5x2 − x4, we
rewrite the LP dictionary as follows:

x3 =

x1 =

ζ =

1

2

17

+ w1

− w1

− w1

− 2w2

+ w2

− 4w2

− 5x2

+ 2x2

− 7x2

− x4

− x4

− 2x4

x1, x2, x3, x4, w1, w2 ≥ 0

Since our objective function ζ has all-negative coefficients, increasing any of w1, w2, x2, x4 can only decrease
its value. Thus, we have maximized our solution at (x1, x2, x3, x4) = (2, 0, 1, 0) and (w1, w2) = (0, 0), with
objective value ζ = 17.

Exercise 4. Consider the following linear program.

maximise 2x1 + x2

subject to 2x1 + x2 ≤ 4
2x1 + 3x2 ≤ 3
4x1 + x2 ≤ 5
x1 + 5x2 ≤ 1
x1, x2 ≥ 0
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A. Solve the LP above using the simplex method. Show each dictionary and each basic feasible solution
produced during the execution of the algorithm. Explain which variable is the entering variable and
which one is the leaving variable and why.

B. Solve the LP above by drawing the feasible region in two dimensions and checking the objective function
value on each of its corners.

Solution 4.

A. Original dictionary:

w4 =

w3 =

w2 =

w1 =

ζ =

1

5

3

4

− x1

− 4x1

− 2x1

− 2x1

+ 2x1

− 5x2

− x2

− 3x2

− x2

+ x2

x1, x2, w1, w2, w3, w4,≥ 0

Initial solution:
x1 = 0, x2 = 0, w1 = 4, w2 = 3, w3 = 5, w4 = 1, ζ = 0.

Possible entering variables: x1, x2. Suppose we select x1. Then the corresponding leaving variable
would be w4, since min{2, 3/2, 5/4, 1} = 1. Updated solution:

x1 = 1, x2 = 0, w1 = 4, w2 = 3, w3 = 5, w4 = 0, ζ = 2.

Rewriting LP dictionary using the fact that x1 = 1− w4 − 5x2:

x1 =

w3 =

w2 =

w1 =

ζ =

1

1

1

2

2

− w4

+ 4w4

+ 2w4

+ 2w4

− 2w4

− 5x2

+ 19x2

+ 7x2

+ 9x2

− 9x2

x1, x2, w1, w2, w3, w4,≥ 0

Since both coefficients of ζ are negative, we know that our solution, (x1, x2) = (1, 0) and ζ = 2, must
be maximal.

B. Since this optimization problem is a linear program, we know that its solution lies at one of the vertices
of the feasible region (assuming the feasible region is bounded). Graphing each of the constraints, we
find that the feasible region lies at the intersection of the constraints x1 ≥ 0, x2 ≥ 0, and x1+5x2 ≤ 1,
see Figure 1.

The feasible region is the dark purple triangle in the bottom left. The vertices of this feasible region
are (0, 0), (0, 1/5) and (1, 0); and value of our objective function ζ at each of these vertices is as follows:

ζ(0, 0) = 0, ζ(0, 1/5) = 1/5, ζ(1, 0) = 2.

Thus, we confirm what we showed in part A: that the solution x1 = 1, x2 = 0 maximizes ζ over the
feasible region, and that ζ(1, 0) = 2.
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Figure 1: The feasible region of the given LP. Credit for the figure goes to Kat Molinet.

Exercise 5 (Game of Chicken). Consider the following game of Chicken, where two cars are headed towards
each other in opposite directions at full speed. Each driver can choose to either swerve, (or “chicken”) or
to continue going straight, (or “dear”). If they both dear, they crush and their cars get destroyed. If they
both chicken, they both leave unharmed, but they don’t get the satisfaction of besting their opponent. If
one chickens and the other dares, then the daring driver is the winner. The utility bimatrix of the game is
given below.

Driver 1 / Driver 2 Chicken Dare
Chicken 6,6 2,7
Dare 7,2 0,0

A. Find all the pure Nash equilibria of the game.

B. Find a mixed Nash equilibrium of the game which is not a pure Nash equilibrium.

C. Assume that some trusted party (e.g. a traffic warden or a traffic light) is giving the two players
some advice on how to play the game. In particular, the party first announces to the players that the
possible strategy profiles of the game are either (C,D), (D,C) or (C,C) and each one happens with
equal probability 1/3. Then, the party chooses one of the three profiles at random and lets the players
know of their strategies in that profile, without letting them know of the strategy of the other player.
We will consider some different kind of equilibrium, where the the players do not want to deviate from
their prescribed advice, assuming their opponent is following the advice.

- Assume that Player 1 witnesses the advice “Dare”. Prove that assuming that Player 2 sticks to
his prescribed strategy (whatever that is), Player 1 does not want to deviate from playing “Dare”.

- Assume that Player 1 witnesses the advice “Chicken”. Prove that assuming that Player 2 sticks
to his prescribed strategy (whatever that is), Player 1 does not want to deviate from playing
“Chicken”. Here, not wanting to deviate from playing “Chicken” means that his expected payoff
from playing “Chicken” (over the randomness of the profile distribution of the trusted party) is
higher than that of playing “Dare”.

D. Compare the total utility (sum of players’ utilities) of all the equilibria that you have computed. What
do you observe?

Solution 5.
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A. It is easy to see by inspection that (C,D) and (D,C) are the only pure Nash equilibria (PNE) of the
game. Indeed, in (D,C) for example, Player 1 would receive a utility of 6 by deviating to C, which is
smaller than 7, the utility which the player currently receives. If Player 2 deviated to D, the player
would receive a utility of 0, which is smaller than 2. The argument for (C,D) being a PNE is symmetric.

B. Since we have found the PNE, we can now find a mixed Nash equilibrium (MNE) with full support,
i.e., one in which both strategies are played with positive probability for every agent. Let (x1, x2) be
the mixed strategy of Player 1 and (y1, y2) be the mixed strategy of Player 2. By a proposition that we
saw in the lectures, we know that each pure strategy in the support of a player’s equilibrium strategy
must yield the same utility against the mixed equilibrium strategy of the other player. This gives rise
to the following system of inequalities.

For Player 1 we have:

6y1 + 2y2 = 7y1

x1 + x2 = 1

For Player 2, we have:

6x1 + 2x2 = 71

y1 + y2 = 1

Solving this system we get the following MNE: (2/3, 1/3), (2/3, 1/3).

C. The solution concept that we will explore in this question is known as a correlated equilibrium, and
was proposed by Robert Aumann in 1974 [1]. An intuitive interpretation is that there is a probability
distributionσ over possible pure strategy profiles. A trusted third party (often referred to as “the
mediator”) is going to draw a pure strategy profile s from the distribution σ, and will prescribe the
corresponding strategy to each player as advice. In a correlated equilibrium, each player maximises
their expected utility when they follow the advice of the mediator.

Formally, let σ be joint distribution σ ∈ ∆(S1×S2× . . .×Sn) over strategy profiles, which we will refer
to a a correlated strategy in the game. Such a correlated strategy profile σ is a correlated equilibrium
(CE) if, for any player i ∈ N and any swap function δi : Si → Si, it holds that

Es∼σ[ui(s)] ≥ Es∼σ[ui(δi(si), s−i)]

An alternative, equivalent definition is the following:

Es∼σ−i|si [ui(si, s−i)] ≥ Es∼σ−i|si [ui(s
′
i, s−i)]

for any si, s
′
i ∈ Si, where σ−i|si is the conditional distribution of profiles s−i, induced when conditioning

on the strategy of Player i being si.

Notice that when σ is a product distribution, then each player i receives a recommendation xi about the
probability of playing each of its own pure strategies sj ∈ Si, independent of the strategies of the others.
This is precisely a mixed strategy for the player, and (x1, . . . , xnj) is a mixed Nash equilibrium. Hence,
every MNE is a CE (but the converse is not true, as we will see in the exercise below).

We now move on to answering the questions of the exercise.

- If Player 1 witnesses the advice “Dare”, then they know that the profile that was drawn from σ was
either (D,C) or (D,D) (because (C,C) or (C,D) are not consistent with their observation of “Dare”).
The conditional distribution σ−1|s1 (conditioned on s1 = D) is C with probability 1 and D with
probability 0 (as the pair (D,D) appears with probability 0 in σ, and hence in σ−1|s1). In other words,
since Player 1 received “Dare”, they know that the strategy of Player 2 is “Chicken” with probability
1. Their expected utility from following the advice is 7; this is the highest possible utility they can
receive in the game, so obviously they do not want to deviate.
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- If Player 1 witnesses the advice “Chicken”, then they know that profile that was drawn from σ was either
(C,C) or (C,D) (because (D,C) or (D,D)) are not consistent with their observation of “Chicken”). The
conditional distribution σ−1|s1 (conditioned on s1 = C) is C with probability 1/2 and D with probabity
1/2 (since the probability of (C,C), as well as the probability of (C,D) in σ was 1/3). Their expected
utility from following the advice of “Chicken” is therefore 6/2+2/2 = 4. If they were to choose “Dare”
instead, their expected utility would be 7/2+0/2 = 3.5, hence smaller than the one of their prescribed
advice.

We conclude that the distribution where (C,D), (D,C) and (C,C) happens with equal probability 1/3 is a
correlated equilibrium.

From the PNE equilibria computed in the first subquestion, the total utility (also known as the social welfare)
is 7+ 2 = 9. The MNE found in the second subquestion has total (expected) utility 4

9 · 12+ 2 · 2
9 · 9+

1
9 · 0 =

28
3 ≈ 9.3. Finally the CE found in the third subquestion has total (expected) utility 2 · 1

3 · 9+
1
3 · 6 = 10. We

observe that the total utility of the CE is higher than that of any MNE that is not also a CE.

This means that if we “relax” the solution concept to allow more profiles as equilibria, we can sometimes
find some that have higher total utility.

Exercise 6 (Bonus Coding Exercise). In your programming language of choice, code a solver for 2-player
zero-sum games. Your solver should take as input a utility matrix in appropriate format (e.g., in Python
this could be a list of lists) and output the optimal strategies for the maximiser and the minimiser, as well
as the value of the game.
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