
Introduction to Algorithms and Data Structures

Tutorial 1

your tutor

School of Informatics
University of Edinburgh

1st-4th October, 2024

Inf2-IADS (2024/25) – tutorial 1 – slide 1



Q1: equivalence with Θ(.)

These are the target functions to “match” (with respect to Θ) to :

f0(n) = 1 f1(n) = lg n f2(n) =
√
n

f3(n) = n f4(n) = n lg n f5(n) = n2

f6(n) = n3 f7(n) = 2n f8(n) = 22n

I Note the increasing order.

I Where are the biggest jumps?

Inf2-IADS (2024/25) – tutorial 1 – slide 2



Q1: sketch of the target functions

Inf2-IADS (2024/25) – tutorial 1 – slide 3



Q1(a)

(a) g(n) = n(n + 1)(2n + 1)/6

We want to decide which of the fi will satisfy g = Θ(fi ):

f0(n) = 1 f1(n) = lg n f2(n) =
√
n

f3(n) = n f4(n) = n lg n f5(n) = n2

f6(n) = n3 f7(n) = 2n f8(n) = 22n

WHY?: We can expand g(n) to n3

3 + n2

2 + n
6 .

All positive coefficients, and therefore the term of highest degree drives the Θ(·).

(By the way, this g(n) is the closed form for Σn
k=1k

2)

Inf2-IADS (2024/25) – tutorial 1 – slide 4



Q1(a)

(a) g(n) = n(n + 1)(2n + 1)/6

We want to decide which of the fi will satisfy g = Θ(fi ):

f0(n) = 1 f1(n) = lg n f2(n) =
√
n

f3(n) = n f4(n) = n lg n f5(n) = n2

f6(n) = n3 f7(n) = 2n f8(n) = 22n

WHY?: We can expand g(n) to n3

3 + n2

2 + n
6 .

All positive coefficients, and therefore the term of highest degree drives the Θ(·).

(By the way, this g(n) is the closed form for Σn
k=1k

2)

Inf2-IADS (2024/25) – tutorial 1 – slide 4



Q1(a)

(a) g(n) = n(n + 1)(2n + 1)/6

We want to decide which of the fi will satisfy g = Θ(fi ):

f0(n) = 1 f1(n) = lg n f2(n) =
√
n

f3(n) = n f4(n) = n lg n f5(n) = n2

f6(n) = n3 f7(n) = 2n f8(n) = 22n

WHY?: We can expand g(n) to n3

3 + n2

2 + n
6 .

All positive coefficients, and therefore the term of highest degree drives the Θ(·).

(By the way, this g(n) is the closed form for Σn
k=1k

2)

Inf2-IADS (2024/25) – tutorial 1 – slide 4



Q1(a)

(a) g(n) = n(n + 1)(2n + 1)/6

We want to decide which of the fi will satisfy g = Θ(fi ):

f0(n) = 1 f1(n) = lg n f2(n) =
√
n

f3(n) = n f4(n) = n lg n f5(n) = n2

f6(n) = n3 f7(n) = 2n f8(n) = 22n

WHY?: We can expand g(n) to n3

3 + n2

2 + n
6 .

All positive coefficients, and therefore the term of highest degree drives the Θ(·).

(By the way, this g(n) is the closed form for Σn
k=1k

2)

Inf2-IADS (2024/25) – tutorial 1 – slide 4



Q1(b), (c)

(b) g(n) = n div 57 (integer division, rounding down).

This is Θ(n). Indeed, g(n) differs from n/57 (exact division) by at most 1.

Formal argument: Which constants c > 0 for Ω(n), C > 0 for O(n) will give

c · n ≤ n div 57 ≤ C · n

for sufficiently large n?

(c) g(n) = n mod 57 + 1.

Values that g(n) could ever possibly take are 1, 2, . . . , 57.

g(n) is Θ(1), because we have 1 ≤ g(n) ≤ 57 for all n.

(Without the ‘+1’, it would be O(1) but not Ω(1) (i.e. not eventually bounded
below by a positive constant), because n mod 57 would be zero infinitely often.)

Inf2-IADS (2024/25) – tutorial 1 – slide 5



Q1(b), (c)

(b) g(n) = n div 57 (integer division, rounding down).

This is Θ(n). Indeed, g(n) differs from n/57 (exact division) by at most 1.

Formal argument: Which constants c > 0 for Ω(n), C > 0 for O(n) will give

c · n ≤ n div 57 ≤ C · n

for sufficiently large n?

(c) g(n) = n mod 57 + 1.

Values that g(n) could ever possibly take are 1, 2, . . . , 57.

g(n) is Θ(1), because we have 1 ≤ g(n) ≤ 57 for all n.

(Without the ‘+1’, it would be O(1) but not Ω(1) (i.e. not eventually bounded
below by a positive constant), because n mod 57 would be zero infinitely often.)

Inf2-IADS (2024/25) – tutorial 1 – slide 5



Q1(b), (c)

(b) g(n) = n div 57 (integer division, rounding down).

This is Θ(n). Indeed, g(n) differs from n/57 (exact division) by at most 1.

Formal argument: Which constants c > 0 for Ω(n), C > 0 for O(n) will give

c · n ≤ n div 57 ≤ C · n

for sufficiently large n?

(c) g(n) = n mod 57 + 1.

Values that g(n) could ever possibly take are 1, 2, . . . , 57.

g(n) is Θ(1), because we have 1 ≤ g(n) ≤ 57 for all n.

(Without the ‘+1’, it would be O(1) but not Ω(1) (i.e. not eventually bounded
below by a positive constant), because n mod 57 would be zero infinitely often.)

Inf2-IADS (2024/25) – tutorial 1 – slide 5



Q1(b), (c)

(b) g(n) = n div 57 (integer division, rounding down).

This is Θ(n). Indeed, g(n) differs from n/57 (exact division) by at most 1.

Formal argument: Which constants c > 0 for Ω(n), C > 0 for O(n) will give

c · n ≤ n div 57 ≤ C · n

for sufficiently large n?

(c) g(n) = n mod 57 + 1.

Values that g(n) could ever possibly take are 1, 2, . . . , 57.

g(n) is Θ(1), because we have 1 ≤ g(n) ≤ 57 for all n.

(Without the ‘+1’, it would be O(1) but not Ω(1) (i.e. not eventually bounded
below by a positive constant), because n mod 57 would be zero infinitely often.)

Inf2-IADS (2024/25) – tutorial 1 – slide 5



Q1(b), (c)

(b) g(n) = n div 57 (integer division, rounding down).

This is Θ(n). Indeed, g(n) differs from n/57 (exact division) by at most 1.

Formal argument: Which constants c > 0 for Ω(n), C > 0 for O(n) will give

c · n ≤ n div 57 ≤ C · n

for sufficiently large n?

(c) g(n) = n mod 57 + 1.

Values that g(n) could ever possibly take are 1, 2, . . . , 57.

g(n) is Θ(1), because we have 1 ≤ g(n) ≤ 57 for all n.

(Without the ‘+1’, it would be O(1) but not Ω(1) (i.e. not eventually bounded
below by a positive constant), because n mod 57 would be zero infinitely often.)

Inf2-IADS (2024/25) – tutorial 1 – slide 5



Q1(b), (c)

(b) g(n) = n div 57 (integer division, rounding down).

This is Θ(n). Indeed, g(n) differs from n/57 (exact division) by at most 1.

Formal argument: Which constants c > 0 for Ω(n), C > 0 for O(n) will give

c · n ≤ n div 57 ≤ C · n

for sufficiently large n?

(c) g(n) = n mod 57 + 1.

Values that g(n) could ever possibly take are 1, 2, . . . , 57.

g(n) is Θ(1), because we have 1 ≤ g(n) ≤ 57 for all n.

(Without the ‘+1’, it would be O(1) but not Ω(1) (i.e. not eventually bounded
below by a positive constant), because n mod 57 would be zero infinitely often.)

Inf2-IADS (2024/25) – tutorial 1 – slide 5



Q1(b), (c)

(b) g(n) = n div 57 (integer division, rounding down).

This is Θ(n). Indeed, g(n) differs from n/57 (exact division) by at most 1.

Formal argument: Which constants c > 0 for Ω(n), C > 0 for O(n) will give

c · n ≤ n div 57 ≤ C · n

for sufficiently large n?

(c) g(n) = n mod 57 + 1.

Values that g(n) could ever possibly take are 1, 2, . . . , 57.

g(n) is Θ(1), because we have 1 ≤ g(n) ≤ 57 for all n.

(Without the ‘+1’, it would be O(1) but not Ω(1) (i.e. not eventually bounded
below by a positive constant), because n mod 57 would be zero infinitely often.)

Inf2-IADS (2024/25) – tutorial 1 – slide 5



Q1(d)

g(n) = n lg n + (lg n)3 + e−n.

Allowed to assume that lg n = o(
√
n).

Important - this gives (lg n)3 = (lg n) · o(n), so (lg n)3 is o(n lg n).

Also e−n is less than 1 always.

So n lg(n) is the dominating component of g(n), and g(n lg n) = O(n lgn).

Constants for the formal argument?

I c = 1, N = 1 for the Ω(n lg n)

I C = 3, N = 2 for the O(n lg n) (but the “truth” is C > 1)

Inf2-IADS (2024/25) – tutorial 1 – slide 6



Q1(d)

g(n) = n lg n + (lg n)3 + e−n.

Allowed to assume that lg n = o(
√
n).

Important - this gives (lg n)3 = (lg n) · o(n), so (lg n)3 is o(n lg n).

Also e−n is less than 1 always.

So n lg(n) is the dominating component of g(n), and g(n lg n) = O(n lgn).

Constants for the formal argument?

I c = 1, N = 1 for the Ω(n lg n)

I C = 3, N = 2 for the O(n lg n) (but the “truth” is C > 1)

Inf2-IADS (2024/25) – tutorial 1 – slide 6



Q1(d)

g(n) = n lg n + (lg n)3 + e−n.

Allowed to assume that lg n = o(
√
n).

Important - this gives (lg n)3 = (lg n) · o(n), so (lg n)3 is o(n lg n).

Also e−n is less than 1 always.

So n lg(n) is the dominating component of g(n), and g(n lg n) = O(n lgn).

Constants for the formal argument?

I c = 1, N = 1 for the Ω(n lg n)

I C = 3, N = 2 for the O(n lg n) (but the “truth” is C > 1)

Inf2-IADS (2024/25) – tutorial 1 – slide 6



Q1(d)

g(n) = n lg n + (lg n)3 + e−n.

Allowed to assume that lg n = o(
√
n).

Important - this gives (lg n)3 = (lg n) · o(n), so (lg n)3 is o(n lg n).

Also e−n is less than 1 always.

So n lg(n) is the dominating component of g(n), and g(n lg n) = O(n lgn).

Constants for the formal argument?

I c = 1, N = 1 for the Ω(n lg n)

I C = 3, N = 2 for the O(n lg n) (but the “truth” is C > 1)

Inf2-IADS (2024/25) – tutorial 1 – slide 6



Q1(e) - tricky one!

Where would the n! function fit ? Does n! have the same growth rate as one of
the above functions fi? Or does it fall between fi and fi+1 for some i?

Answer: The growth rate of n! falls strictly between that of 2n and 22n .

To see that 2n = o(n!), let’s look at the ration n!/2n, which is

1× 2× 3× · · · × n

2× 2× 2× · · · × 2

This is at least n/2 (once n ≥ 2), which tends to infinity as n does.

To see that n! = o(22n), we can note that for n ≥ 2,

n! < nn < (2n)n = 2n2 ≤ 22n

Inf2-IADS (2024/25) – tutorial 1 – slide 7



Q1(e) - tricky one!

Where would the n! function fit ? Does n! have the same growth rate as one of
the above functions fi? Or does it fall between fi and fi+1 for some i?

Answer: The growth rate of n! falls strictly between that of 2n and 22n .

To see that 2n = o(n!), let’s look at the ration n!/2n, which is

1× 2× 3× · · · × n

2× 2× 2× · · · × 2

This is at least n/2 (once n ≥ 2), which tends to infinity as n does.

To see that n! = o(22n), we can note that for n ≥ 2,

n! < nn < (2n)n = 2n2 ≤ 22n

Inf2-IADS (2024/25) – tutorial 1 – slide 7



Q1(e) - tricky one!

Where would the n! function fit ? Does n! have the same growth rate as one of
the above functions fi? Or does it fall between fi and fi+1 for some i?

Answer: The growth rate of n! falls strictly between that of 2n and 22n .

To see that 2n = o(n!), let’s look at the ration n!/2n, which is

1× 2× 3× · · · × n

2× 2× 2× · · · × 2

This is at least n/2 (once n ≥ 2), which tends to infinity as n does.

To see that n! = o(22n), we can note that for n ≥ 2,

n! < nn < (2n)n = 2n2 ≤ 22n

Inf2-IADS (2024/25) – tutorial 1 – slide 7



Q1(e) - tricky one!

Where would the n! function fit ? Does n! have the same growth rate as one of
the above functions fi? Or does it fall between fi and fi+1 for some i?

Answer: The growth rate of n! falls strictly between that of 2n and 22n .

To see that 2n = o(n!), let’s look at the ration n!/2n, which is

1× 2× 3× · · · × n

2× 2× 2× · · · × 2

This is at least n/2 (once n ≥ 2), which tends to infinity as n does.

To see that n! = o(22n), we can note that for n ≥ 2,

n! < nn < (2n)n = 2n2 ≤ 22n

Inf2-IADS (2024/25) – tutorial 1 – slide 7



Q2 rigorous proofs

Let’s remind ourselves of the assumptions we are working under. These really
matter!

I Polynomial functions grow more slowly than exponential ones: for
any k > 0 and any r > 1, we have nk = o(rn).

(yes, these are allowed to be different k and r . The constant which is the
“base” needs to satisfy the > 1)

I Logs grow more slowly than square roots, cube roots etc.: for any k ≥ 1
we have lg n = o(n1/k).

Inf2-IADS (2024/25) – tutorial 1 – slide 8



Q2 (a) - rigorous proofs

Show directly from the definition that 100n3 = o(n4).

Need to show that for every c > 0, we can find N ∈ N such that

100n3 ≤ c · n4

for all n ≥ N.

Looks promising!, given the extra n on rhs.
The 100 constant is just a little technical distraction.

Working backwards . . . how do we ensure 100n3 < cn4?
This is equivalent to 100 < cn (for positive n), equivalent to n > 100/c .

Now we reverse this to give our polished argument:
Given c > 0, consider any N > 100/c . Then for any n ≥ N we have

100n3 = c(100/c)n3 < c .n.n3 = cn4.

(The working-backwards is the stuff we really need to learn)

Inf2-IADS (2024/25) – tutorial 1 – slide 9



Q2 (a) - rigorous proofs

Show directly from the definition that 100n3 = o(n4).

Need to show that for every c > 0, we can find N ∈ N such that

100n3 ≤ c · n4

for all n ≥ N.

Looks promising!, given the extra n on rhs.
The 100 constant is just a little technical distraction.

Working backwards . . . how do we ensure 100n3 < cn4?
This is equivalent to 100 < cn (for positive n), equivalent to n > 100/c .

Now we reverse this to give our polished argument:
Given c > 0, consider any N > 100/c . Then for any n ≥ N we have

100n3 = c(100/c)n3 < c .n.n3 = cn4.

(The working-backwards is the stuff we really need to learn)

Inf2-IADS (2024/25) – tutorial 1 – slide 9



Q2 (a) - rigorous proofs

Show directly from the definition that 100n3 = o(n4).

Need to show that for every c > 0, we can find N ∈ N such that

100n3 ≤ c · n4

for all n ≥ N.

Looks promising!, given the extra n on rhs.
The 100 constant is just a little technical distraction.

Working backwards . . . how do we ensure 100n3 < cn4?
This is equivalent to 100 < cn (for positive n), equivalent to n > 100/c .

Now we reverse this to give our polished argument:
Given c > 0, consider any N > 100/c . Then for any n ≥ N we have

100n3 = c(100/c)n3 < c .n.n3 = cn4.

(The working-backwards is the stuff we really need to learn)

Inf2-IADS (2024/25) – tutorial 1 – slide 9



Q2 (a) - rigorous proofs

Show directly from the definition that 100n3 = o(n4).

Need to show that for every c > 0, we can find N ∈ N such that

100n3 ≤ c · n4

for all n ≥ N.

Looks promising!, given the extra n on rhs.
The 100 constant is just a little technical distraction.

Working backwards . . . how do we ensure 100n3 < cn4?

This is equivalent to 100 < cn (for positive n), equivalent to n > 100/c .

Now we reverse this to give our polished argument:
Given c > 0, consider any N > 100/c . Then for any n ≥ N we have

100n3 = c(100/c)n3 < c .n.n3 = cn4.

(The working-backwards is the stuff we really need to learn)

Inf2-IADS (2024/25) – tutorial 1 – slide 9



Q2 (a) - rigorous proofs

Show directly from the definition that 100n3 = o(n4).

Need to show that for every c > 0, we can find N ∈ N such that

100n3 ≤ c · n4

for all n ≥ N.

Looks promising!, given the extra n on rhs.
The 100 constant is just a little technical distraction.

Working backwards . . . how do we ensure 100n3 < cn4?
This is equivalent to 100 < cn (for positive n), equivalent to n > 100/c .

Now we reverse this to give our polished argument:
Given c > 0, consider any N > 100/c . Then for any n ≥ N we have

100n3 = c(100/c)n3 < c .n.n3 = cn4.

(The working-backwards is the stuff we really need to learn)

Inf2-IADS (2024/25) – tutorial 1 – slide 9



Q2 (a) - rigorous proofs

Show directly from the definition that 100n3 = o(n4).

Need to show that for every c > 0, we can find N ∈ N such that

100n3 ≤ c · n4

for all n ≥ N.

Looks promising!, given the extra n on rhs.
The 100 constant is just a little technical distraction.

Working backwards . . . how do we ensure 100n3 < cn4?
This is equivalent to 100 < cn (for positive n), equivalent to n > 100/c .

Now we reverse this to give our polished argument:
Given c > 0, consider any N > 100/c . Then for any n ≥ N we have

100n3 = c(100/c)n3 < c .n.n3 = cn4.

(The working-backwards is the stuff we really need to learn)

Inf2-IADS (2024/25) – tutorial 1 – slide 9



Q2(b)

If r , s are any real numbers with 0 ≤ r < s, then nr = o(ns).

Notice the ratio ns/nr is ns−r , and s − r > 0.

Can make ns−r bigger than any hypothetical C > 0 by requiring n > C 1/(s−r).

This shows that ns = ω(nr ), which is equivalent to nr = o(ns).

Tip: Looking at how the ratio of the two functions behaves is often a good start.

Inf2-IADS (2024/25) – tutorial 1 – slide 10



Q2(b)

If r , s are any real numbers with 0 ≤ r < s, then nr = o(ns).

Notice the ratio ns/nr is ns−r , and s − r > 0.

Can make ns−r bigger than any hypothetical C > 0 by requiring n > C 1/(s−r).

This shows that ns = ω(nr ), which is equivalent to nr = o(ns).

Tip: Looking at how the ratio of the two functions behaves is often a good start.

Inf2-IADS (2024/25) – tutorial 1 – slide 10



Q2(b)

If r , s are any real numbers with 0 ≤ r < s, then nr = o(ns).

Notice the ratio ns/nr is ns−r , and s − r > 0.

Can make ns−r bigger than any hypothetical C > 0 by requiring n > C 1/(s−r).

This shows that ns = ω(nr ), which is equivalent to nr = o(ns).

Tip: Looking at how the ratio of the two functions behaves is often a good start.

Inf2-IADS (2024/25) – tutorial 1 – slide 10



Q2(b)

If r , s are any real numbers with 0 ≤ r < s, then nr = o(ns).

Notice the ratio ns/nr is ns−r , and s − r > 0.

Can make ns−r bigger than any hypothetical C > 0 by requiring n > C 1/(s−r).

This shows that ns = ω(nr ), which is equivalent to nr = o(ns).

Tip: Looking at how the ratio of the two functions behaves is often a good start.

Inf2-IADS (2024/25) – tutorial 1 – slide 10



Q2(b)

If r , s are any real numbers with 0 ≤ r < s, then nr = o(ns).

Notice the ratio ns/nr is ns−r , and s − r > 0.

Can make ns−r bigger than any hypothetical C > 0 by requiring n > C 1/(s−r).

This shows that ns = ω(nr ), which is equivalent to nr = o(ns).

Tip: Looking at how the ratio of the two functions behaves is often a good start.

Inf2-IADS (2024/25) – tutorial 1 – slide 10



Q2(c)

Writing ‘lg’ for log to base 2 and ‘ln’ for log to base e, show that ln n = O(lg n).
Deduce that lg n = Θ(ln n).

There is a well-known formula

logb x = (logb a)(loga x)

Can use this to write lg x exactly as (lg e)(ln x).

Here lg e is an absolute constant, so we immediately get lg n = Θ(ln n).

Tip: “rules of logs” are really important for IADS

Inf2-IADS (2024/25) – tutorial 1 – slide 11



Q2(c)

Writing ‘lg’ for log to base 2 and ‘ln’ for log to base e, show that ln n = O(lg n).
Deduce that lg n = Θ(ln n).

There is a well-known formula

logb x = (logb a)(loga x)

Can use this to write lg x exactly as (lg e)(ln x).

Here lg e is an absolute constant, so we immediately get lg n = Θ(ln n).

Tip: “rules of logs” are really important for IADS

Inf2-IADS (2024/25) – tutorial 1 – slide 11



Q2(c)

Writing ‘lg’ for log to base 2 and ‘ln’ for log to base e, show that ln n = O(lg n).
Deduce that lg n = Θ(ln n).

There is a well-known formula

logb x = (logb a)(loga x)

Can use this to write lg x exactly as (lg e)(ln x).

Here lg e is an absolute constant, so we immediately get lg n = Θ(ln n).

Tip: “rules of logs” are really important for IADS

Inf2-IADS (2024/25) – tutorial 1 – slide 11



Q2(d)

Is it likewise true that 2n = Θ(en)?

No!

The ratio en/2n is (e/2)n, which will surpass any given C > 0 as n increases
(specifically, once n > lnC/ ln(e/2)).

Inf2-IADS (2024/25) – tutorial 1 – slide 12



Q2(d)

Is it likewise true that 2n = Θ(en)? No!

The ratio en/2n is (e/2)n, which will surpass any given C > 0 as n increases
(specifically, once n > lnC/ ln(e/2)).

Inf2-IADS (2024/25) – tutorial 1 – slide 12



Q3 - long-division

Recall the methods you learned at school for addition, long multiplication and
long division. For each of these, informally analyse the asymptotic worst-case
runtime on inputs of at most n decimal digits.
You may take ‘time’ to mean the number of times you have to write a symbol
on the page.

This is a “discuss” (informal) question - however, it was inspired by UK primary
school teaching!

It’s interesting to discuss the different formatting of Long Division in different
countries, as discussed in this reddit post (for example)

Inf2-IADS (2024/25) – tutorial 1 – slide 13

https://www.reddit.com/r/matheducation/comments/dfextv/long_division_in_different_countries_and_the


Q3 - long-division

Recall the methods you learned at school for addition, long multiplication and
long division. For each of these, informally analyse the asymptotic worst-case
runtime on inputs of at most n decimal digits.
You may take ‘time’ to mean the number of times you have to write a symbol
on the page.

This is a “discuss” (informal) question - however, it was inspired by UK primary
school teaching!

It’s interesting to discuss the different formatting of Long Division in different
countries, as discussed in this reddit post (for example)

Inf2-IADS (2024/25) – tutorial 1 – slide 13

https://www.reddit.com/r/matheducation/comments/dfextv/long_division_in_different_countries_and_the


Q3 - some examples

Inf2-IADS (2024/25) – tutorial 1 – slide 14



Q3

I For numbers of at most n digits, addition takes ‘time’ Θ(n).

We have to write the (at most n + 1) digits of the answer, plus (at worst)
a similar number of carry digits.

I Long multiplication of two n-digit numbers is a bit like writing n numbers
(each of at most 2n + 1 digits), then adding all these.

Not hard to reason all of this takes time Θ(n2).

I For integer long division (e.g. resulting in a div b and a mod b).

The division will proceed in ≤ n ‘rounds’, in each of which we perform a
subtraction of size ≤ n + 1.

(The necessary values of b, 2b, . . . , 9b can be precomputed at the start,
taking just time Θ(n).)

So the overall runtime is clearly O(n2).

To see that the worst-case runtime is also Ω(n2), consider the situation of
dividing an n-digit a by an n/2-digit b. Clearly this can require around n/2
subtractions of size n/2.

Inf2-IADS (2024/25) – tutorial 1 – slide 15



Q3

I For numbers of at most n digits, addition takes ‘time’ Θ(n).

We have to write the (at most n + 1) digits of the answer, plus (at worst)
a similar number of carry digits.

I Long multiplication of two n-digit numbers is a bit like writing n numbers
(each of at most 2n + 1 digits), then adding all these.

Not hard to reason all of this takes time Θ(n2).

I For integer long division (e.g. resulting in a div b and a mod b).

The division will proceed in ≤ n ‘rounds’, in each of which we perform a
subtraction of size ≤ n + 1.

(The necessary values of b, 2b, . . . , 9b can be precomputed at the start,
taking just time Θ(n).)

So the overall runtime is clearly O(n2).

To see that the worst-case runtime is also Ω(n2), consider the situation of
dividing an n-digit a by an n/2-digit b. Clearly this can require around n/2
subtractions of size n/2.

Inf2-IADS (2024/25) – tutorial 1 – slide 15



Q3

I For numbers of at most n digits, addition takes ‘time’ Θ(n).

We have to write the (at most n + 1) digits of the answer, plus (at worst)
a similar number of carry digits.

I Long multiplication of two n-digit numbers is a bit like writing n numbers
(each of at most 2n + 1 digits), then adding all these.

Not hard to reason all of this takes time Θ(n2).

I For integer long division (e.g. resulting in a div b and a mod b).

The division will proceed in ≤ n ‘rounds’, in each of which we perform a
subtraction of size ≤ n + 1.

(The necessary values of b, 2b, . . . , 9b can be precomputed at the start,
taking just time Θ(n).)

So the overall runtime is clearly O(n2).

To see that the worst-case runtime is also Ω(n2), consider the situation of
dividing an n-digit a by an n/2-digit b. Clearly this can require around n/2
subtractions of size n/2.

Inf2-IADS (2024/25) – tutorial 1 – slide 15



Q3

I For numbers of at most n digits, addition takes ‘time’ Θ(n).

We have to write the (at most n + 1) digits of the answer, plus (at worst)
a similar number of carry digits.

I Long multiplication of two n-digit numbers is a bit like writing n numbers
(each of at most 2n + 1 digits), then adding all these.

Not hard to reason all of this takes time Θ(n2).

I For integer long division (e.g. resulting in a div b and a mod b).

The division will proceed in ≤ n ‘rounds’, in each of which we perform a
subtraction of size ≤ n + 1.

(The necessary values of b, 2b, . . . , 9b can be precomputed at the start,
taking just time Θ(n).)

So the overall runtime is clearly O(n2).

To see that the worst-case runtime is also Ω(n2), consider the situation of
dividing an n-digit a by an n/2-digit b. Clearly this can require around n/2
subtractions of size n/2.

Inf2-IADS (2024/25) – tutorial 1 – slide 15


