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Q1: arithmetic operations of Expmod

The task is to evaluate

a"mod m as Expmod(a,n, m) (different methods),
and then from that

ProbablePrime(n) = (Expmod(2,n—1,n) = 1)

How many arithmetic operations (%, +, —, div, mod) will be used?
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Q1: arithmetic operations of Expmod

The task is to evaluate

a"mod m as Expmod(a,n, m) (different methods),
and then from that

ProbablePrime(n) = (Expmod(2,n—1,n) = 1)

How many arithmetic operations (%, +, —, div, mod) will be used?

Method B: Method C:
Expmod (a,n,m): Expmod (a,n,m):
b=1 if n=0 then return 1
fori=1ton else
b= (b x a)modm d = Expmod (a,|n/2],m)
return b if n is even

return (d x d) mod m
else return (d x d x a) mod m

IADS (2020/21) — tutorial 2 — slide 2



Q1 (a): Method B

Method B:
Expmod (a,n,m):
b=1
fori=1ton
b= (b x a) mod m
return b
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Q1 (a): Method B

Method B:

Expmod (a,n,m):
b=1
fori=1ton
b= (b x a) mod m
return b

» We do 3 arithmetic operations for each i (x, mod, increment /)

» We do n iterations = exactly 3n arithmetic operations. So ©(n).
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Q1 (a): Method B

Method B:
Expmod (a,n,m):
b=1
fori=1ton
b= (b x a) mod m
return b

» We do 3 arithmetic operations for each i (x, mod, increment /)

» We do n iterations = exactly 3n arithmetic operations. So ©(n).

For ProbablePrime(n) (we have a = 2), we also have to subtract 1 from n to
set up the computation Expmod(2,n—1,n) ... =
we have 3n+ 1 arithmetic operations, still ©(n).

IADS (2020/21) — tutorial 2 — slide 3



Q1 (a): Method B

Method B:
Expmod (a,n,m):
b=1
fori=1ton
b= (b x a) mod m
return b

» We do 3 arithmetic operations for each i (x, mod, increment /)

» We do n iterations = exactly 3n arithmetic operations. So ©(n).

For ProbablePrime(n) (we have a = 2), we also have to subtract 1 from n to
set up the computation Expmod(2,n—1,n) ... =
we have 3n+ 1 arithmetic operations, still ©(n).

note 1: What about the other operations?
note 2: Constants for the O(-) and the Q(-)?
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Q1 (b): Method C

Method C:
Expmod (a,n,m):
if n=0 then return 1
else
d = Expmod (a,|n/2],m)
if n is even
return (d x d) mod m
else return (d x d x a) mod m
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Q1 (b): Method C

Method C:

Expmod (a,n,m):
if n=0 then return 1
else
d = Expmod (a,|n/2],m)
if n is even
return (d x d) mod m
else return (d x d x a) mod m

» 3-4 arithmetic operations at each “level” (x, mod, div, maybe a 2nd x)

» We visit at most Ig n (ie log, n) recursive “level” =
< 41g n arithmetic operations. So O(lg n).
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Q1 (b): Method C

Method C:

Expmod (a,n,m):
if n=0 then return 1
else
d = Expmod (a,|n/2],m)
if n is even
return (d x d) mod m
else return (d x d x a) mod m

» 3-4 arithmetic operations at each “level” (x, mod, div, maybe a 2nd x)

» We visit at most Ig n (ie log, n) recursive “level” =
< 41g n arithmetic operations. So O(lg n).

For the QQ(n) counterpart consider the case when n is a power of 2.
For ProbablePrime(n) again ©(n) transfers directly (just 1 extra operation).
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Q1 (b): Method C

Method C:

Expmod (a,n,m):
if n=0 then return 1
else
d = Expmod (a,|n/2],m)
if n is even
return (d x d) mod m
else return (d x d x a) mod m

» 3-4 arithmetic operations at each “level” (x, mod, div, maybe a 2nd x)
» We visit at most Ig n (ie log, n) recursive “level” =

< 41g n arithmetic operations. So O(lg n).

For the QQ(n) counterpart consider the case when n is a power of 2.
For ProbablePrime(n) again ©(n) transfers directly (just 1 extra operation).

note: Constants?
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Q2: Bubblesort

BubbleSort (A):
fori=1to|A—1
for j = 0 to |A|—2
if Alj] > A[j+1]
swap A[j] and A[j+1]

» Run an example with (say) 18,11,2,9,8

» Discuss the “sweeps”
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Bubblesort example

BubbleSort (A):
fori=1to|A—1
for j = 0 to |A|—2
if Alj] > A[j+1]
swap A[j] and A[j+1]
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Q2(a) - correctness

claim: After the first sweep through the array, the largest element will be in its
correct place at position |A| —1 (ie, n—1).
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Q2(a) - correctness

claim: After the first sweep through the array, the largest element will be in its
correct place at position |A| —1 (ie, n—1).

» Suppose the largest element starts at position k.
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Q2(a) - correctness

claim: After the first sweep through the array, the largest element will be in its
correct place at position |A| —1 (ie, n—1).

» Suppose the largest element starts at position k.

> If k =|A|—1, then A[K] is already in the correct place.
It will not be moved (explain why).
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Q2(a) - correctness

claim: After the first sweep through the array, the largest element will be in its
correct place at position |A| —1 (ie, n—1).

» Suppose the largest element starts at position k.

> If k =|A|—1, then A[K] is already in the correct place.
It will not be moved (explain why).

» If k <|A]—1, then when j = k, this larger element will be swapped
into position k + 1.
For every j = k+ 2,..., this largest value gets swapped right until j
reaches |A| — 2, when the element gets swapped into |A] — 1.
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Q2(a) - correctness

claim: After the first sweep through the array, the largest element will be in its
correct place at position |A| —1 (ie, n—1).

» Suppose the largest element starts at position k.

> If k =|A|—1, then A[K] is already in the correct place.
It will not be moved (explain why).

» If k <|A]—1, then when j = k, this larger element will be swapped
into position k + 1.
For every j = k+ 2,..., this largest value gets swapped right until j
reaches |A| — 2, when the element gets swapped into |A] — 1.

claim: After |Al — 1 sweeps (ie n — 1 sweeps), the array will be fully sorted.

“Invariant” is that after i sweeps, the largest i elements x; < x < -+ < x; are
in sorted order in the top / positions.

note: Talk about invariants.
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Q2 (b) - asymptotic running-time

Asymptotic worst- and best-case number of comparisons for BubbleSort.
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Q2 (b) - asymptotic running-time

Asymptotic worst- and best-case number of comparisons for BubbleSort.

For BubbleSort, we always do a sequence of (n— 1) “sweeps” up the arrays:
» Each “sweep” is of length n, with n — 1 comparisons, maybe some swaps
> As “sweeps’ progress, the big items gather (in sorted order) up the top.

» In the later sweeps, most comparisons are redundant, few swaps happen.
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Q2 (b) - asymptotic running-time

Asymptotic worst- and best-case number of comparisons for BubbleSort.

For BubbleSort, we always do a sequence of (n— 1) “sweeps” up the arrays:
» Each “sweep” is of length n, with n — 1 comparisons, maybe some swaps.
> As “sweeps’ progress, the big items gather (in sorted order) up the top.
» In the later sweeps, most comparisons are redundant, few swaps happen.

The worst running-time and best-case running-time are both in proportion to

(n—1)% on all inputs of length n, the algorithm performs exactly (n — 1)
comparisons (even if no swaps take place).
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Q2 (b) - asymptotic running-time

Asymptotic worst- and best-case number of comparisons for BubbleSort.

For BubbleSort, we always do a sequence of (n— 1) “sweeps” up the arrays:
» Each “sweep” is of length n, with n — 1 comparisons, maybe some swaps.
> As “sweeps’ progress, the big items gather (in sorted order) up the top.
» In the later sweeps, most comparisons are redundant, few swaps happen.

The worst running-time and best-case running-time are both in proportion to

(n—1)% on all inputs of length n, the algorithm performs exactly (n — 1)
comparisons (even if no swaps take place).

Best-case is already-sorted order, worst-case reverse-sorted order.

Only affects swaps though. And overall both cases are ©(n?)
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Q2(c) - improvements

Improvement 1: After sweep i, items in positions |A|—i, ..., |A|—1 never move.
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Q2(c) - improvements

Improvement 1: After sweep i, items in positions |A|—i, ..., |A|—1 never move.
= so upper limit of j should be |A|—i—1, not |A| —2
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Q2(c) - improvements
Improvement 1: After sweep i, items in positions |A|—i, ..., |A|—1 never move.

= so upper limit of j should be |A|—i—1, not |A| —2

Improvement 2: If we do a sweep with 0 swaps, the array is sorted.
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Q2(c) - improvements

Improvement 1: After sweep i, items in positions |A|—i, ..., |A|—1 never move.
= so upper limit of j should be |A|—i—1, not |A| —2

Improvement 2: If we do a sweep with 0 swaps, the array is sorted.
= count swaps each sweep, terminate when it hits 0 ('flg’ boolean variable).
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Q2(c) - improvements

Improvement 1: After sweep i, items in positions |A|—i, ..., |A|—1 never move.
= so upper limit of j should be |A|—i—1, not |A| —2

Improvement 2: If we do a sweep with 0 swaps, the array is sorted.
= count swaps each sweep, terminate when it hits 0 ('flg’ boolean variable).

BubbleSort2(A):
i=1
repeat
=i+l
flg = false
for j = 0 to |A|—i
if A[j] > A[i+1]
swap A[j] and A[j+1]
flg = true
until flg = false
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Q2 (d) - asymptotics of Bubblesort2

The worst-case number of comparisons has roughly halved (now n(n—1)/2),
but is still @(n?).
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Q2 (d) - asymptotics of Bubblesort2

The worst-case number of comparisons has roughly halved (now n(n—1)/2),
but is still @(n?).

worst-case occurs when the input A is reverse-sorted.

» We will always do |A| — 1—i swaps on the i-th iteration (the highest item
for 0, 1, ..., |A] — 1—iis in position 0).

» So we run every “sweep” (length n, n—1, ..., 2)

> Z, 1 i =0(n?) like Insertsort.
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Q2 (d) - asymptotics of Bubblesort2

The worst-case number of comparisons has roughly halved (now n(n—1)/2),
but is still @(n?).

worst-case occurs when the input A is reverse-sorted.

» We will always do |A| — 1—i swaps on the i-th iteration (the highest item

for 0, 1, ..., |A] — 1—iis in position 0).
» So we run every “sweep” (length n, n—1, ..., 2)
> Z, 1 i =0(n?) like Insertsort.

best case occurs when A is already sorted.
» Now the first sweep does 0 swaps, so we can stop immediately.

» O(n) best-case running-time.
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Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.
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Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])
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Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])
Proof: Let i,j be an inversion in the input A, i.e. initially Afi] = x >y = A[j].
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Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])
Proof: Let i,j be an inversion in the input A, i.e. initially Afi] = x >y = A[j].

Track the movements of x and y as the computation proceeds.
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Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.
(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])
Proof: Let i,j be an inversion in the input A, i.e. initially Afi] = x >y = A[j].
Track the movements of x and y as the computation proceeds.

» At the start we have x before y ...

» and at the end (when A is sorted) we must have x after y.

» But x (and y) can move by only one position each step, so ...
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claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])
Proof: Let i,j be an inversion in the input A, i.e. initially Afi] = x >y = A[j].
Track the movements of x and y as the computation proceeds.

» At the start we have x before y ...

» and at the end (when A is sorted) we must have x after y.

» But x (and y) can move by only one position each step, so ...
there must be a time when these elements meet and are swapped;
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claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.
(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])
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» At the start we have x before y ...

» and at the end (when A is sorted) we must have x after y.

» But x (and y) can move by only one position each step, so ...
there must be a time when these elements meet and are swapped;
(and for this to happen, they must have been directly compared)
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Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.
(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])
Proof: Let i,j be an inversion in the input A, i.e. initially Afi] = x >y = A[j].
Track the movements of x and y as the computation proceeds.

» At the start we have x before y ...

» and at the end (when A is sorted) we must have x after y.

» But x (and y) can move by only one position each step, so ...
there must be a time when these elements meet and are swapped;
(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons > number of inversions.
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Q3: Write a version of MergeSort that uses just two arrays
A and B of size n.

We require two subroutines:

» MergeAtoB(m,p,n): merges the segment A[m],...,A[p—1] with the
segment A[p],... ,A[n—1]
(assuming these segments are themselves already sorted),
and writes the result to B[m],. .. ,B[n—1].

» MergeBtoA(m,p,n): merges the segment B[m],... ,B[p—1] with the
segment B[p],...,B[n—1], and writes the result to A[m],... , A[n—1].

Minor variants of the Merge procedure from lectures (except do not return a
value). Should work correctly even when one of the segments has length 0.
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Q3 cont'd.

The following recursive procedure for MergeSort will then work:

MergeSort(m,n):
if n—m > 1

q = [(m+n)/2]

p = [(m+q)/2]
r=[(q+n)/2]
MergeSort(m,p)
MergeSort(p.q)
MergeSort(q,r)
MergeSort(r,n)
MergeAtoB(m,p,q)
MergeAtoB(q,r,n)
MergeBtoA(m,q,n)
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Q3 cont'd: What is the memory space use of this
algorithm?

The arrays A and B (together) occupy ©(n) of memory: main space requirement.
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Q3 cont’'d: What is the memory space use of this
algorithm?

The arrays A and B (together) occupy ©(n) of memory: main space requirement.

We also need to keep track of certain information for each of the recursive calls
to MergeSort currently in progress:

» values of m,n,q,p,r,

» plus a record of which line of code we've got to in that call, so that we
know where to return to.
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to MergeSort currently in progress:

» values of m,n,q,p,r,
» plus a record of which line of code we've got to in that call, so that we
know where to return to.
This is ©(1) of information per call.

The maximum depth of recursion is [log,(n)], so ©(lg n) of memory altogether.
(In a typical programming language implementation, all this information will be
stored on the call stack.)
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While a call to MergeAtoB or MergeBtoA is in progress, there will also be the
variables i,j,k associated with this call: just ©(1) space.
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Q3 cont’'d: What is the memory space use of this
algorithm?

The arrays A and B (together) occupy ©(n) of memory: main space requirement.

We also need to keep track of certain information for each of the recursive calls
to MergeSort currently in progress:

» values of m,n,q,p,r,
» plus a record of which line of code we've got to in that call, so that we
know where to return to.
This is ©(1) of information per call.

The maximum depth of recursion is [log,(n)], so ©(lg n) of memory altogether.
(In a typical programming language implementation, all this information will be
stored on the call stack.)

While a call to MergeAtoB or MergeBtoA is in progress, there will also be the
variables i,j,k associated with this call: just ©(1) space.
So the total memory requirement is ©(n) + O(lgn) + ©(1) = O(n).
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