
Introduction to Algorithms and Data Structures

Tutorial 2

your tutor

School of Informatics
University of Edinburgh

8th-11th October, 2024

IADS (2020/21) – tutorial 2 – slide 1

Q1: arithmetic operations of Expmod

The task is to evaluate

an mod m as Expmod(a, n,m) (different methods),

and then from that

ProbablePrime(n) = (Expmod(2, n − 1, n)
?
= 1)

How many arithmetic operations (×,+,−,div,mod) will be used?

Method B:

Expmod (a,n,m):
b=1
for i = 1 to n

b = (b × a) mod m
return b

Method C:

Expmod (a,n,m):
if n=0 then return 1
else

d = Expmod (a,bn/2c,m)
if n is even

return (d × d) mod m
else return (d × d × a) mod m

IADS (2020/21) – tutorial 2 – slide 2

Q1: arithmetic operations of Expmod

The task is to evaluate

an mod m as Expmod(a, n,m) (different methods),

and then from that

ProbablePrime(n) = (Expmod(2, n − 1, n)
?
= 1)

How many arithmetic operations (×,+,−,div,mod) will be used?

Method B:

Expmod (a,n,m):
b=1
for i = 1 to n

b = (b × a) mod m
return b

Method C:

Expmod (a,n,m):
if n=0 then return 1
else

d = Expmod (a,bn/2c,m)
if n is even

return (d × d) mod m
else return (d × d × a) mod m

IADS (2020/21) – tutorial 2 – slide 2

Q1 (a): Method B

Method B:

Expmod (a,n,m):
b=1
for i = 1 to n

b = (b × a) mod m
return b

I We do 3 arithmetic operations for each i (×, mod, increment i)

I We do n iterations ⇒ exactly 3n arithmetic operations. So Θ(n).

For ProbablePrime(n) (we have a = 2), we also have to subtract 1 from n to
set up the computation Expmod(2, n − 1, n) . . . ⇒
we have 3n + 1 arithmetic operations, still Θ(n).

note 1: What about the other operations?
note 2: Constants for the O(·) and the Ω(·)?

IADS (2020/21) – tutorial 2 – slide 3

Q1 (a): Method B

Method B:

Expmod (a,n,m):
b=1
for i = 1 to n

b = (b × a) mod m
return b

I We do 3 arithmetic operations for each i (×, mod, increment i)

I We do n iterations ⇒ exactly 3n arithmetic operations. So Θ(n).

For ProbablePrime(n) (we have a = 2), we also have to subtract 1 from n to
set up the computation Expmod(2, n − 1, n) . . . ⇒
we have 3n + 1 arithmetic operations, still Θ(n).

note 1: What about the other operations?
note 2: Constants for the O(·) and the Ω(·)?

IADS (2020/21) – tutorial 2 – slide 3

Q1 (a): Method B

Method B:

Expmod (a,n,m):
b=1
for i = 1 to n

b = (b × a) mod m
return b

I We do 3 arithmetic operations for each i (×, mod, increment i)

I We do n iterations ⇒ exactly 3n arithmetic operations. So Θ(n).

For ProbablePrime(n) (we have a = 2), we also have to subtract 1 from n to
set up the computation Expmod(2, n − 1, n) . . . ⇒
we have 3n + 1 arithmetic operations, still Θ(n).

note 1: What about the other operations?
note 2: Constants for the O(·) and the Ω(·)?

IADS (2020/21) – tutorial 2 – slide 3

Q1 (a): Method B

Method B:

Expmod (a,n,m):
b=1
for i = 1 to n

b = (b × a) mod m
return b

I We do 3 arithmetic operations for each i (×, mod, increment i)

I We do n iterations ⇒ exactly 3n arithmetic operations. So Θ(n).

For ProbablePrime(n) (we have a = 2), we also have to subtract 1 from n to
set up the computation Expmod(2, n − 1, n) . . . ⇒
we have 3n + 1 arithmetic operations, still Θ(n).

note 1: What about the other operations?
note 2: Constants for the O(·) and the Ω(·)?

IADS (2020/21) – tutorial 2 – slide 3

Q1 (b): Method C

Method C:

Expmod (a,n,m):
if n=0 then return 1
else

d = Expmod (a,bn/2c,m)
if n is even

return (d × d) mod m
else return (d × d × a) mod m

I 3-4 arithmetic operations at each “level” (×, mod, div, maybe a 2nd ×)

I We visit at most lg n (ie log2 n) recursive “level” ⇒
≤ 4 lg n arithmetic operations. So O(lg n).

For the Ω(n) counterpart consider the case when n is a power of 2.
For ProbablePrime(n) again Θ(n) transfers directly (just 1 extra operation).

note: Constants?

IADS (2020/21) – tutorial 2 – slide 4

Q1 (b): Method C

Method C:

Expmod (a,n,m):
if n=0 then return 1
else

d = Expmod (a,bn/2c,m)
if n is even

return (d × d) mod m
else return (d × d × a) mod m

I 3-4 arithmetic operations at each “level” (×, mod, div, maybe a 2nd ×)

I We visit at most lg n (ie log2 n) recursive “level” ⇒
≤ 4 lg n arithmetic operations. So O(lg n).

For the Ω(n) counterpart consider the case when n is a power of 2.
For ProbablePrime(n) again Θ(n) transfers directly (just 1 extra operation).

note: Constants?

IADS (2020/21) – tutorial 2 – slide 4

Q1 (b): Method C

Method C:

Expmod (a,n,m):
if n=0 then return 1
else

d = Expmod (a,bn/2c,m)
if n is even

return (d × d) mod m
else return (d × d × a) mod m

I 3-4 arithmetic operations at each “level” (×, mod, div, maybe a 2nd ×)

I We visit at most lg n (ie log2 n) recursive “level” ⇒
≤ 4 lg n arithmetic operations. So O(lg n).

For the Ω(n) counterpart consider the case when n is a power of 2.
For ProbablePrime(n) again Θ(n) transfers directly (just 1 extra operation).

note: Constants?

IADS (2020/21) – tutorial 2 – slide 4

Q1 (b): Method C

Method C:

Expmod (a,n,m):
if n=0 then return 1
else

d = Expmod (a,bn/2c,m)
if n is even

return (d × d) mod m
else return (d × d × a) mod m

I 3-4 arithmetic operations at each “level” (×, mod, div, maybe a 2nd ×)

I We visit at most lg n (ie log2 n) recursive “level” ⇒
≤ 4 lg n arithmetic operations. So O(lg n).

For the Ω(n) counterpart consider the case when n is a power of 2.
For ProbablePrime(n) again Θ(n) transfers directly (just 1 extra operation).

note: Constants?

IADS (2020/21) – tutorial 2 – slide 4

Q2: Bubblesort

BubbleSort (A):
for i = 1 to |A|− 1

for j = 0 to |A|−2
if A[j] > A[j+1]

swap A[j] and A[j+1]

I Run an example with (say) 18, 11, 2, 9, 8

I Discuss the “sweeps”

IADS (2020/21) – tutorial 2 – slide 5

Bubblesort example

BubbleSort (A):
for i = 1 to |A|− 1

for j = 0 to |A|−2
if A[j] > A[j+1]

swap A[j] and A[j+1]

IADS (2020/21) – tutorial 2 – slide 6

Q2(a) - correctness

claim: After the first sweep through the array, the largest element will be in its
correct place at position |A|− 1 (ie, n − 1).

I Suppose the largest element starts at position k.

I If k = |A|− 1, then A[k] is already in the correct place.
It will not be moved (explain why).

I If k < |A|− 1, then when j = k, this larger element will be swapped
into position k + 1.
For every j = k + 2, . . ., this largest value gets swapped right until j
reaches |A|− 2, when the element gets swapped into |A|− 1.

claim: After |A|− 1 sweeps (ie n − 1 sweeps), the array will be fully sorted.

“Invariant” is that after i sweeps, the largest i elements x1 ≤ x2 ≤ · · · ≤ xi are
in sorted order in the top i positions.

note: Talk about invariants.

IADS (2020/21) – tutorial 2 – slide 7

Q2(a) - correctness

claim: After the first sweep through the array, the largest element will be in its
correct place at position |A|− 1 (ie, n − 1).

I Suppose the largest element starts at position k .

I If k = |A|− 1, then A[k] is already in the correct place.
It will not be moved (explain why).

I If k < |A|− 1, then when j = k, this larger element will be swapped
into position k + 1.
For every j = k + 2, . . ., this largest value gets swapped right until j
reaches |A|− 2, when the element gets swapped into |A|− 1.

claim: After |A|− 1 sweeps (ie n − 1 sweeps), the array will be fully sorted.

“Invariant” is that after i sweeps, the largest i elements x1 ≤ x2 ≤ · · · ≤ xi are
in sorted order in the top i positions.

note: Talk about invariants.

IADS (2020/21) – tutorial 2 – slide 7

Q2(a) - correctness

claim: After the first sweep through the array, the largest element will be in its
correct place at position |A|− 1 (ie, n − 1).

I Suppose the largest element starts at position k .

I If k = |A|− 1, then A[k] is already in the correct place.
It will not be moved (explain why).

I If k < |A|− 1, then when j = k, this larger element will be swapped
into position k + 1.
For every j = k + 2, . . ., this largest value gets swapped right until j
reaches |A|− 2, when the element gets swapped into |A|− 1.

claim: After |A|− 1 sweeps (ie n − 1 sweeps), the array will be fully sorted.

“Invariant” is that after i sweeps, the largest i elements x1 ≤ x2 ≤ · · · ≤ xi are
in sorted order in the top i positions.

note: Talk about invariants.

IADS (2020/21) – tutorial 2 – slide 7

Q2(a) - correctness

claim: After the first sweep through the array, the largest element will be in its
correct place at position |A|− 1 (ie, n − 1).

I Suppose the largest element starts at position k .

I If k = |A|− 1, then A[k] is already in the correct place.
It will not be moved (explain why).

I If k < |A|− 1, then when j = k , this larger element will be swapped
into position k + 1.
For every j = k + 2, . . ., this largest value gets swapped right until j
reaches |A|− 2, when the element gets swapped into |A|− 1.

claim: After |A|− 1 sweeps (ie n − 1 sweeps), the array will be fully sorted.

“Invariant” is that after i sweeps, the largest i elements x1 ≤ x2 ≤ · · · ≤ xi are
in sorted order in the top i positions.

note: Talk about invariants.

IADS (2020/21) – tutorial 2 – slide 7

Q2(a) - correctness

claim: After the first sweep through the array, the largest element will be in its
correct place at position |A|− 1 (ie, n − 1).

I Suppose the largest element starts at position k .

I If k = |A|− 1, then A[k] is already in the correct place.
It will not be moved (explain why).

I If k < |A|− 1, then when j = k , this larger element will be swapped
into position k + 1.
For every j = k + 2, . . ., this largest value gets swapped right until j
reaches |A|− 2, when the element gets swapped into |A|− 1.

claim: After |A|− 1 sweeps (ie n − 1 sweeps), the array will be fully sorted.

“Invariant” is that after i sweeps, the largest i elements x1 ≤ x2 ≤ · · · ≤ xi are
in sorted order in the top i positions.

note: Talk about invariants.

IADS (2020/21) – tutorial 2 – slide 7

Q2 (b) - asymptotic running-time

Asymptotic worst- and best-case number of comparisons for BubbleSort.

For BubbleSort, we always do a sequence of (n − 1) “sweeps” up the arrays:

I Each “sweep” is of length n, with n − 1 comparisons, maybe some swaps.

I As “sweeps” progress, the big items gather (in sorted order) up the top.

I In the later sweeps, most comparisons are redundant, few swaps happen.

The worst running-time and best-case running-time are both in proportion to
(n − 1)2: on all inputs of length n, the algorithm performs exactly (n − 1)2

comparisons (even if no swaps take place).

Best-case is already-sorted order, worst-case reverse-sorted order.

Only affects swaps though. And overall both cases are Θ(n2)

IADS (2020/21) – tutorial 2 – slide 8

Q2 (b) - asymptotic running-time

Asymptotic worst- and best-case number of comparisons for BubbleSort.

For BubbleSort, we always do a sequence of (n − 1) “sweeps” up the arrays:

I Each “sweep” is of length n, with n − 1 comparisons, maybe some swaps.

I As “sweeps” progress, the big items gather (in sorted order) up the top.

I In the later sweeps, most comparisons are redundant, few swaps happen.

The worst running-time and best-case running-time are both in proportion to
(n − 1)2: on all inputs of length n, the algorithm performs exactly (n − 1)2

comparisons (even if no swaps take place).

Best-case is already-sorted order, worst-case reverse-sorted order.

Only affects swaps though. And overall both cases are Θ(n2)

IADS (2020/21) – tutorial 2 – slide 8

Q2 (b) - asymptotic running-time

Asymptotic worst- and best-case number of comparisons for BubbleSort.

For BubbleSort, we always do a sequence of (n − 1) “sweeps” up the arrays:

I Each “sweep” is of length n, with n − 1 comparisons, maybe some swaps.

I As “sweeps” progress, the big items gather (in sorted order) up the top.

I In the later sweeps, most comparisons are redundant, few swaps happen.

The worst running-time and best-case running-time are both in proportion to
(n − 1)2: on all inputs of length n, the algorithm performs exactly (n − 1)2

comparisons (even if no swaps take place).

Best-case is already-sorted order, worst-case reverse-sorted order.

Only affects swaps though. And overall both cases are Θ(n2)

IADS (2020/21) – tutorial 2 – slide 8

Q2 (b) - asymptotic running-time

Asymptotic worst- and best-case number of comparisons for BubbleSort.

For BubbleSort, we always do a sequence of (n − 1) “sweeps” up the arrays:

I Each “sweep” is of length n, with n − 1 comparisons, maybe some swaps.

I As “sweeps” progress, the big items gather (in sorted order) up the top.

I In the later sweeps, most comparisons are redundant, few swaps happen.

The worst running-time and best-case running-time are both in proportion to
(n − 1)2: on all inputs of length n, the algorithm performs exactly (n − 1)2

comparisons (even if no swaps take place).

Best-case is already-sorted order, worst-case reverse-sorted order.

Only affects swaps though. And overall both cases are Θ(n2)

IADS (2020/21) – tutorial 2 – slide 8

Q2(c) - improvements

Improvement 1: After sweep i , items in positions |A|−i, . . ., |A|−1 never move.

⇒ so upper limit of j should be |A|− i − 1, not |A|− 2

Improvement 2: If we do a sweep with 0 swaps, the array is sorted.⇒ count swaps each sweep, terminate when it hits 0 (’flg’ boolean variable).

BubbleSort2(A):
i = 1
repeat

i = i+1
flg = false
for j = 0 to |A|−i

if A[j] > A[j+1]
swap A[j] and A[j+1]
flg = true

until flg = false

IADS (2020/21) – tutorial 2 – slide 9

Q2(c) - improvements

Improvement 1: After sweep i , items in positions |A|−i, . . ., |A|−1 never move.⇒ so upper limit of j should be |A|− i − 1, not |A|− 2

Improvement 2: If we do a sweep with 0 swaps, the array is sorted.⇒ count swaps each sweep, terminate when it hits 0 (’flg’ boolean variable).

BubbleSort2(A):
i = 1
repeat

i = i+1
flg = false
for j = 0 to |A|−i

if A[j] > A[j+1]
swap A[j] and A[j+1]
flg = true

until flg = false

IADS (2020/21) – tutorial 2 – slide 9

Q2(c) - improvements

Improvement 1: After sweep i , items in positions |A|−i, . . ., |A|−1 never move.⇒ so upper limit of j should be |A|− i − 1, not |A|− 2

Improvement 2: If we do a sweep with 0 swaps, the array is sorted.

⇒ count swaps each sweep, terminate when it hits 0 (’flg’ boolean variable).

BubbleSort2(A):
i = 1
repeat

i = i+1
flg = false
for j = 0 to |A|−i

if A[j] > A[j+1]
swap A[j] and A[j+1]
flg = true

until flg = false

IADS (2020/21) – tutorial 2 – slide 9

Q2(c) - improvements

Improvement 1: After sweep i , items in positions |A|−i, . . ., |A|−1 never move.⇒ so upper limit of j should be |A|− i − 1, not |A|− 2

Improvement 2: If we do a sweep with 0 swaps, the array is sorted.⇒ count swaps each sweep, terminate when it hits 0 (’flg’ boolean variable).

BubbleSort2(A):
i = 1
repeat

i = i+1
flg = false
for j = 0 to |A|−i

if A[j] > A[j+1]
swap A[j] and A[j+1]
flg = true

until flg = false

IADS (2020/21) – tutorial 2 – slide 9

Q2(c) - improvements

Improvement 1: After sweep i , items in positions |A|−i, . . ., |A|−1 never move.⇒ so upper limit of j should be |A|− i − 1, not |A|− 2

Improvement 2: If we do a sweep with 0 swaps, the array is sorted.⇒ count swaps each sweep, terminate when it hits 0 (’flg’ boolean variable).

BubbleSort2(A):
i = 1
repeat

i = i+1
flg = false
for j = 0 to |A|−i

if A[j] > A[j+1]
swap A[j] and A[j+1]
flg = true

until flg = false

IADS (2020/21) – tutorial 2 – slide 9

Q2 (d) - asymptotics of Bubblesort2

The worst-case number of comparisons has roughly halved (now n(n − 1)/2),
but is still Θ(n2).

worst-case occurs when the input A is reverse-sorted.

I We will always do |A|− 1−i swaps on the i-th iteration (the highest item
for 0, 1, . . ., |A|− 1−i is in position 0).

I So we run every “sweep” (length n, n − 1, . . ., 2)

I
∑n−1

i=1 i = Θ(n2) like Insertsort.

best case occurs when A is already sorted.

I Now the first sweep does 0 swaps, so we can stop immediately.

I Θ(n) best-case running-time.

IADS (2020/21) – tutorial 2 – slide 10

Q2 (d) - asymptotics of Bubblesort2

The worst-case number of comparisons has roughly halved (now n(n − 1)/2),
but is still Θ(n2).

worst-case occurs when the input A is reverse-sorted.

I We will always do |A|− 1−i swaps on the i-th iteration (the highest item
for 0, 1, . . ., |A|− 1−i is in position 0).

I So we run every “sweep” (length n, n − 1, . . ., 2)

I
∑n−1

i=1 i = Θ(n2) like Insertsort.

best case occurs when A is already sorted.

I Now the first sweep does 0 swaps, so we can stop immediately.

I Θ(n) best-case running-time.

IADS (2020/21) – tutorial 2 – slide 10

Q2 (d) - asymptotics of Bubblesort2

The worst-case number of comparisons has roughly halved (now n(n − 1)/2),
but is still Θ(n2).

worst-case occurs when the input A is reverse-sorted.

I We will always do |A|− 1−i swaps on the i-th iteration (the highest item
for 0, 1, . . ., |A|− 1−i is in position 0).

I So we run every “sweep” (length n, n − 1, . . ., 2)

I
∑n−1

i=1 i = Θ(n2) like Insertsort.

best case occurs when A is already sorted.

I Now the first sweep does 0 swaps, so we can stop immediately.

I Θ(n) best-case running-time.

IADS (2020/21) – tutorial 2 – slide 10

Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])

Proof: Let i,j be an inversion in the input A, i.e. initially A[i] = x > y = A[j].

Track the movements of x and y as the computation proceeds.

I At the start we have x before y . . .

I and at the end (when A is sorted) we must have x after y.

I But x (and y) can move by only one position each step, so . . .

there must be a time when these elements meet and are swapped;

(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons ≥ number of inversions.

IADS (2020/21) – tutorial 2 – slide 11

Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])

Proof: Let i,j be an inversion in the input A, i.e. initially A[i] = x > y = A[j].

Track the movements of x and y as the computation proceeds.

I At the start we have x before y . . .

I and at the end (when A is sorted) we must have x after y.

I But x (and y) can move by only one position each step, so . . .

there must be a time when these elements meet and are swapped;

(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons ≥ number of inversions.

IADS (2020/21) – tutorial 2 – slide 11

Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])

Proof: Let i,j be an inversion in the input A, i.e. initially A[i] = x > y = A[j].

Track the movements of x and y as the computation proceeds.

I At the start we have x before y . . .

I and at the end (when A is sorted) we must have x after y.

I But x (and y) can move by only one position each step, so . . .

there must be a time when these elements meet and are swapped;

(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons ≥ number of inversions.

IADS (2020/21) – tutorial 2 – slide 11

Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])

Proof: Let i,j be an inversion in the input A, i.e. initially A[i] = x > y = A[j].

Track the movements of x and y as the computation proceeds.

I At the start we have x before y . . .

I and at the end (when A is sorted) we must have x after y.

I But x (and y) can move by only one position each step, so . . .

there must be a time when these elements meet and are swapped;

(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons ≥ number of inversions.

IADS (2020/21) – tutorial 2 – slide 11

Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])

Proof: Let i,j be an inversion in the input A, i.e. initially A[i] = x > y = A[j].

Track the movements of x and y as the computation proceeds.

I At the start we have x before y . . .

I and at the end (when A is sorted) we must have x after y.

I But x (and y) can move by only one position each step, so . . .

there must be a time when these elements meet and are swapped;

(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons ≥ number of inversions.

IADS (2020/21) – tutorial 2 – slide 11

Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])

Proof: Let i,j be an inversion in the input A, i.e. initially A[i] = x > y = A[j].

Track the movements of x and y as the computation proceeds.

I At the start we have x before y . . .

I and at the end (when A is sorted) we must have x after y.

I But x (and y) can move by only one position each step, so . . .

there must be a time when these elements meet and are swapped;

(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons ≥ number of inversions.

IADS (2020/21) – tutorial 2 – slide 11

Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])

Proof: Let i,j be an inversion in the input A, i.e. initially A[i] = x > y = A[j].

Track the movements of x and y as the computation proceeds.

I At the start we have x before y . . .

I and at the end (when A is sorted) we must have x after y.

I But x (and y) can move by only one position each step, so . . .

there must be a time when these elements meet and are swapped;

(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons ≥ number of inversions.

IADS (2020/21) – tutorial 2 – slide 11

Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])

Proof: Let i,j be an inversion in the input A, i.e. initially A[i] = x > y = A[j].

Track the movements of x and y as the computation proceeds.

I At the start we have x before y . . .

I and at the end (when A is sorted) we must have x after y.

I But x (and y) can move by only one position each step, so . . .

there must be a time when these elements meet and are swapped;

(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons ≥ number of inversions.

IADS (2020/21) – tutorial 2 – slide 11

Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])

Proof: Let i,j be an inversion in the input A, i.e. initially A[i] = x > y = A[j].

Track the movements of x and y as the computation proceeds.

I At the start we have x before y . . .

I and at the end (when A is sorted) we must have x after y.

I But x (and y) can move by only one position each step, so . . .

there must be a time when these elements meet and are swapped;

(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons ≥ number of inversions.

IADS (2020/21) – tutorial 2 – slide 11

Q2(e) - challenge

claim: The number of comparisons performed by BubbleSort2 on input A is at
least the “unsortedness” of A.

(the “unsortedness” is the count of i,j (i < j) pairs such that A[i] > A[j])

Proof: Let i,j be an inversion in the input A, i.e. initially A[i] = x > y = A[j].

Track the movements of x and y as the computation proceeds.

I At the start we have x before y . . .

I and at the end (when A is sorted) we must have x after y.

I But x (and y) can move by only one position each step, so . . .

there must be a time when these elements meet and are swapped;

(and for this to happen, they must have been directly compared)

So for any “inversion” i,j we will see a specific comparison of these items (and it
can only be this exact inversion). Therefore

number of comparisons ≥ number of inversions.

IADS (2020/21) – tutorial 2 – slide 11

Q3: Write a version of MergeSort that uses just two arrays
A and B of size n.

We require two subroutines:

I MergeAtoB(m,p,n): merges the segment A[m],. . . ,A[p−1] with the
segment A[p],. . . ,A[n−1]
(assuming these segments are themselves already sorted),
and writes the result to B[m],. . . ,B[n−1].

I MergeBtoA(m,p,n): merges the segment B[m],. . . ,B[p−1] with the
segment B[p],. . . ,B[n−1], and writes the result to A[m],. . . ,A[n−1].

Minor variants of the Merge procedure from lectures (except do not return a
value). Should work correctly even when one of the segments has length 0.

IADS (2020/21) – tutorial 2 – slide 12

Q3 cont’d.

The following recursive procedure for MergeSort will then work:

MergeSort(m,n):
if n−m > 1

q = b(m+n)/2c
p = b(m+q)/2c
r = b(q+n)/2c
MergeSort(m,p)
MergeSort(p,q)
MergeSort(q,r)
MergeSort(r,n)
MergeAtoB(m,p,q)
MergeAtoB(q,r,n)
MergeBtoA(m,q,n)

IADS (2020/21) – tutorial 2 – slide 13

Q3 cont’d: What is the memory space use of this
algorithm?

The arrays A and B (together) occupy Θ(n) of memory: main space requirement.

We also need to keep track of certain information for each of the recursive calls
to MergeSort currently in progress:

I values of m,n,q,p,r,

I plus a record of which line of code we’ve got to in that call, so that we
know where to return to.

This is Θ(1) of information per call.

The maximum depth of recursion is dlog4(n)e, so Θ(lg n) of memory altogether.
(In a typical programming language implementation, all this information will be
stored on the call stack.)

While a call to MergeAtoB or MergeBtoA is in progress, there will also be the
variables i,j,k associated with this call: just Θ(1) space.

So the total memory requirement is Θ(n) +Θ(lg n) +Θ(1) = Θ(n).

IADS (2020/21) – tutorial 2 – slide 14

Q3 cont’d: What is the memory space use of this
algorithm?

The arrays A and B (together) occupy Θ(n) of memory: main space requirement.

We also need to keep track of certain information for each of the recursive calls
to MergeSort currently in progress:

I values of m,n,q,p,r,

I plus a record of which line of code we’ve got to in that call, so that we
know where to return to.

This is Θ(1) of information per call.

The maximum depth of recursion is dlog4(n)e, so Θ(lg n) of memory altogether.
(In a typical programming language implementation, all this information will be
stored on the call stack.)

While a call to MergeAtoB or MergeBtoA is in progress, there will also be the
variables i,j,k associated with this call: just Θ(1) space.

So the total memory requirement is Θ(n) +Θ(lg n) +Θ(1) = Θ(n).

IADS (2020/21) – tutorial 2 – slide 14

Q3 cont’d: What is the memory space use of this
algorithm?

The arrays A and B (together) occupy Θ(n) of memory: main space requirement.

We also need to keep track of certain information for each of the recursive calls
to MergeSort currently in progress:

I values of m,n,q,p,r,

I plus a record of which line of code we’ve got to in that call, so that we
know where to return to.

This is Θ(1) of information per call.

The maximum depth of recursion is dlog4(n)e, so Θ(lg n) of memory altogether.
(In a typical programming language implementation, all this information will be
stored on the call stack.)

While a call to MergeAtoB or MergeBtoA is in progress, there will also be the
variables i,j,k associated with this call: just Θ(1) space.

So the total memory requirement is Θ(n) +Θ(lg n) +Θ(1) = Θ(n).

IADS (2020/21) – tutorial 2 – slide 14

Q3 cont’d: What is the memory space use of this
algorithm?

The arrays A and B (together) occupy Θ(n) of memory: main space requirement.

We also need to keep track of certain information for each of the recursive calls
to MergeSort currently in progress:

I values of m,n,q,p,r,

I plus a record of which line of code we’ve got to in that call, so that we
know where to return to.

This is Θ(1) of information per call.

The maximum depth of recursion is dlog4(n)e, so Θ(lg n) of memory altogether.
(In a typical programming language implementation, all this information will be
stored on the call stack.)

While a call to MergeAtoB or MergeBtoA is in progress, there will also be the
variables i,j,k associated with this call: just Θ(1) space.

So the total memory requirement is Θ(n) +Θ(lg n) +Θ(1) = Θ(n).

IADS (2020/21) – tutorial 2 – slide 14

Q3 cont’d: What is the memory space use of this
algorithm?

The arrays A and B (together) occupy Θ(n) of memory: main space requirement.

We also need to keep track of certain information for each of the recursive calls
to MergeSort currently in progress:

I values of m,n,q,p,r,

I plus a record of which line of code we’ve got to in that call, so that we
know where to return to.

This is Θ(1) of information per call.

The maximum depth of recursion is dlog4(n)e, so Θ(lg n) of memory altogether.
(In a typical programming language implementation, all this information will be
stored on the call stack.)

While a call to MergeAtoB or MergeBtoA is in progress, there will also be the
variables i,j,k associated with this call: just Θ(1) space.

So the total memory requirement is Θ(n) +Θ(lg n) +Θ(1) = Θ(n).

IADS (2020/21) – tutorial 2 – slide 14

Q3 cont’d: What is the memory space use of this
algorithm?

The arrays A and B (together) occupy Θ(n) of memory: main space requirement.

We also need to keep track of certain information for each of the recursive calls
to MergeSort currently in progress:

I values of m,n,q,p,r,

I plus a record of which line of code we’ve got to in that call, so that we
know where to return to.

This is Θ(1) of information per call.

The maximum depth of recursion is dlog4(n)e, so Θ(lg n) of memory altogether.
(In a typical programming language implementation, all this information will be
stored on the call stack.)

While a call to MergeAtoB or MergeBtoA is in progress, there will also be the
variables i,j,k associated with this call: just Θ(1) space.

So the total memory requirement is Θ(n) +Θ(lg n) +Θ(1) = Θ(n).

IADS (2020/21) – tutorial 2 – slide 14

