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Q1: QuickSort best-case

Worst-case running time for QuickSort is Ω(n2).

Average-case running time for QuickSort is Ω(n lg n).

We are interested in the best-case running time.

Algorithm QuickSort(A, i, j)

(a) if i < j then

(b) split ← partition (A, i, j)

(c) quickSort(A, i, split - 1)

(d) quickSort(A, split+1, j)
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Q1(a): QuickSort best-case

(b) Give an actual example of an input array where QuickSort takes only
O(n lg n) time to sort (assume keys are 1, 2, ..., n, where n = 2k −1 for some k).

We want (n + 1)/2 as pivot *(why?)

For recursive calls to partition, must carefully place elements in the array.

For n = 3, want last cell (pivot) holding the middle item - eg 1, 3, 2 order.

Then build the answer for n = 7 using the pattern for n = 3:
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Q1(a): QuickSort best-case
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Q1 (b): QuickSort best-case

(a) Show that best-case running time is always > cn lg n, c > 0.

I key element : partition

I partition always takes linear time

I how does partition occur at level i?

Consider the first lg(n) − 4 ”levels” of the recursion tree.

Lowest level can have been broken into at most 2lg(n)−4 = n/16 subarrays.
(true for all levels from level 0 to level ln(n) − 4 inclusive).

Must allow for cropping up to
∑lg(n)−4

d=0 2d < 2lg(n)−3 = n/8 pivots.

Then ≥ 7n/8 items still belong to subarrays of length ≥ 2 throughout.

So work by partition across level d = Ω(7n/8) = Ω(n) (for any d).

Total work across all lg(n) − 4 levels = Ω(n lg(n)).

IADS – Tutorial 5– slide 5



Q1 (b): QuickSort best-case

(a) Show that best-case running time is always > cn lg n, c > 0.

I key element : partition

I partition always takes linear time

I how does partition occur at level i?

Consider the first lg(n) − 4 ”levels” of the recursion tree.

Lowest level can have been broken into at most 2lg(n)−4 = n/16 subarrays.
(true for all levels from level 0 to level ln(n) − 4 inclusive).

Must allow for cropping up to
∑lg(n)−4

d=0 2d < 2lg(n)−3 = n/8 pivots.

Then ≥ 7n/8 items still belong to subarrays of length ≥ 2 throughout.

So work by partition across level d = Ω(7n/8) = Ω(n) (for any d).

Total work across all lg(n) − 4 levels = Ω(n lg(n)).

IADS – Tutorial 5– slide 5



Q1 (b): QuickSort best-case

(a) Show that best-case running time is always > cn lg n, c > 0.

I key element : partition

I partition always takes linear time

I how does partition occur at level i?

Consider the first lg(n) − 4 ”levels” of the recursion tree.

Lowest level can have been broken into at most 2lg(n)−4 = n/16 subarrays.
(true for all levels from level 0 to level ln(n) − 4 inclusive).

Must allow for cropping up to
∑lg(n)−4

d=0 2d < 2lg(n)−3 = n/8 pivots.

Then ≥ 7n/8 items still belong to subarrays of length ≥ 2 throughout.

So work by partition across level d = Ω(7n/8) = Ω(n) (for any d).

Total work across all lg(n) − 4 levels = Ω(n lg(n)).

IADS – Tutorial 5– slide 5



Q1 (b): QuickSort best-case

(a) Show that best-case running time is always > cn lg n, c > 0.

I key element : partition

I partition always takes linear time

I how does partition occur at level i?

Consider the first lg(n) − 4 ”levels” of the recursion tree.

Lowest level can have been broken into at most 2lg(n)−4 = n/16 subarrays.

(true for all levels from level 0 to level ln(n) − 4 inclusive).

Must allow for cropping up to
∑lg(n)−4

d=0 2d < 2lg(n)−3 = n/8 pivots.

Then ≥ 7n/8 items still belong to subarrays of length ≥ 2 throughout.

So work by partition across level d = Ω(7n/8) = Ω(n) (for any d).

Total work across all lg(n) − 4 levels = Ω(n lg(n)).

IADS – Tutorial 5– slide 5



Q1 (b): QuickSort best-case

(a) Show that best-case running time is always > cn lg n, c > 0.

I key element : partition

I partition always takes linear time

I how does partition occur at level i?

Consider the first lg(n) − 4 ”levels” of the recursion tree.

Lowest level can have been broken into at most 2lg(n)−4 = n/16 subarrays.
(true for all levels from level 0 to level ln(n) − 4 inclusive).

Must allow for cropping up to
∑lg(n)−4

d=0 2d < 2lg(n)−3 = n/8 pivots.

Then ≥ 7n/8 items still belong to subarrays of length ≥ 2 throughout.

So work by partition across level d = Ω(7n/8) = Ω(n) (for any d).

Total work across all lg(n) − 4 levels = Ω(n lg(n)).

IADS – Tutorial 5– slide 5



Q1 (b): QuickSort best-case

(a) Show that best-case running time is always > cn lg n, c > 0.

I key element : partition

I partition always takes linear time

I how does partition occur at level i?

Consider the first lg(n) − 4 ”levels” of the recursion tree.

Lowest level can have been broken into at most 2lg(n)−4 = n/16 subarrays.
(true for all levels from level 0 to level ln(n) − 4 inclusive).

Must allow for cropping up to
∑lg(n)−4

d=0 2d < 2lg(n)−3 = n/8 pivots.

Then ≥ 7n/8 items still belong to subarrays of length ≥ 2 throughout.

So work by partition across level d = Ω(7n/8) = Ω(n) (for any d).

Total work across all lg(n) − 4 levels = Ω(n lg(n)).

IADS – Tutorial 5– slide 5



Q1 (b): QuickSort best-case

(a) Show that best-case running time is always > cn lg n, c > 0.

I key element : partition

I partition always takes linear time

I how does partition occur at level i?

Consider the first lg(n) − 4 ”levels” of the recursion tree.

Lowest level can have been broken into at most 2lg(n)−4 = n/16 subarrays.
(true for all levels from level 0 to level ln(n) − 4 inclusive).

Must allow for cropping up to
∑lg(n)−4

d=0 2d < 2lg(n)−3 = n/8 pivots.

Then ≥ 7n/8 items still belong to subarrays of length ≥ 2 throughout.

So work by partition across level d = Ω(7n/8) = Ω(n) (for any d).

Total work across all lg(n) − 4 levels = Ω(n lg(n)).

IADS – Tutorial 5– slide 5



Q1 (b): QuickSort best-case

(a) Show that best-case running time is always > cn lg n, c > 0.

I key element : partition

I partition always takes linear time

I how does partition occur at level i?

Consider the first lg(n) − 4 ”levels” of the recursion tree.

Lowest level can have been broken into at most 2lg(n)−4 = n/16 subarrays.
(true for all levels from level 0 to level ln(n) − 4 inclusive).

Must allow for cropping up to
∑lg(n)−4

d=0 2d < 2lg(n)−3 = n/8 pivots.

Then ≥ 7n/8 items still belong to subarrays of length ≥ 2 throughout.

So work by partition across level d = Ω(7n/8) = Ω(n) (for any d).

Total work across all lg(n) − 4 levels = Ω(n lg(n)).

IADS – Tutorial 5– slide 5



Q1 (b): QuickSort best-case

(a) Show that best-case running time is always > cn lg n, c > 0.

I key element : partition

I partition always takes linear time

I how does partition occur at level i?

Consider the first lg(n) − 4 ”levels” of the recursion tree.

Lowest level can have been broken into at most 2lg(n)−4 = n/16 subarrays.
(true for all levels from level 0 to level ln(n) − 4 inclusive).

Must allow for cropping up to
∑lg(n)−4

d=0 2d < 2lg(n)−3 = n/8 pivots.

Then ≥ 7n/8 items still belong to subarrays of length ≥ 2 throughout.

So work by partition across level d = Ω(7n/8) = Ω(n) (for any d).

Total work across all lg(n) − 4 levels = Ω(n lg(n)).

IADS – Tutorial 5– slide 5



Q2: Breadth-first search vs. Depth-first search

We represent our collection of found vertices as a set of subtrees.

Each subtree with a particular root at level 0.

Found vertices will be at levels 1, 2, 3,...
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Q2 (a)

Adjacency matrix
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Q2 (a)

Adjcency list
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Q2 (b)

BFS starts at node 0 (the only node in level 0).

bfsFromVertex(0) will add the nodes 1 and 2 to the Queue (if that order), these
being the “level 1” nodes (Q becomes 1, 2).

The next iteration De-Queues 1 and explores its adjacent edges, ignoring (1, 0)
because 0 was previously “visited”.
Queue becomes 2, 3, 4.
The nodes 3 and 4 will belong to level 2 of the search tree.

Next, we De-Queue node 2 and explore all four adjacent edges, pushing
non-visited neighbours 6 and 7 onto the Queue.
Q becomes 3, 4, 6, 7
6 and 7 are also level 2.

Now almost done. The De-Queueing of node 3 does nothing, but De-Queueing
4, causes node 5 to become visited, and the only node on level 3.
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Q2 (c)

DFS starts at node 0 (the only node in level 0), and we run a similar execution,
except using the Stack instead of the Queue.

Be careful with the order of adding items to Stack (according to Adjacency list
order) and note that this means that adjacent items to u will then be “popped”
in the opposite order. It’s a subtle thing that makes a difference.
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Q3

Proof by contradiction:
Assume the opposite of what we want - that there is some edge (u, v) ∈ E
such that |L(u) − L(v)| > 1, where L(·) denotes the level of the node.

Suppose that u is the node with the lower L(·) value.

Then u was added to the BFS search tree (and EnQueued onto Q) earlier
than v

So u was DeQueued before v was, and hence that on u’s De-Queueing,
that v gets considered in the exploration of adjacent edges of u. That
means either

I v is not visited yet, and gets marked as visited at this point (in
which case L(v)← L(u) + 1),

I OR v has become visited in the period after u being visited, in
which case L(v) ∈ {L(u), L(u) + 1}.

In either case this will give |L(u)−L(v)| ≤ 1, so we have our contradiction.
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Q4: recognizing bipartite graphs

Given an undirected graph G = (V ,E ) and asked to determine whether the
graph is bipartite (want to answer in O(n +m) time).

answer: Ok, O(n +m) is a big hint to use one of bfs or dfs.

With bfs we have better control of “who’s on which level (side)”
(level 0 (root) is 1st side, level 1 is 2nd side, level 2 1st-side again, . . .)

Assume graph connected (if not, just check each component is bipartite).

Take any vertex v , label it “blue”.

Alter bfsFromVertex(v) to colour the nodes on each level as we go, alternating
between “red” and “blue” at successive levels. Stays O(n +m).

If ever we “see” (adjacent) node u which already sits in the bfs-tree, check its
existing colour is the opposite to this recent parent.

If we finish (modified) bfsFromVertex(v), and every “previously seen” u passes
the colour-check, then the connected component containing v is bipartite.
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Q4: adapt dfsFromVertex(v)

Algorithm isBipartite?(G , v)

1. visited [v ]← true;

2. colour [v ]← blue

3. Q.enqueue(v)

4. while not Q.isEmpty() do

5. v ← Q.dequeue()

6. for all w adjacent to v do

7. if visited [w ] = false then

8. visited [w ] = true

9. colour [w ] = opposite(colour [v ])

10. Q.enqueue(w)

11. else if colour [w ] = colour [w ]

12. return FALSE
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Q4: tiny adaptation to top-level of BFS

Algorithm isBipartite?(G )

1. Initialise Boolean array visited , setting all entries to false.

2. Initialise Queue Q

3. for all v ∈ V do

4. if visited [v ] = false then

5. bfsFromVertex(G , v)

6. return TRUE
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Q5: “cute” topological sort

Given directed acyclic graph G = (V ,E ): repeatedly find a vertex of in-degree 0,
output it, and then remove it and all of its outgoing edges from the graph.

(a) How can you implement this so that the entire algorithm will be
O(|V |+ |E |)?

answer: we need to work with (dynamic) in-degrees.

Adjacency list data structure A: A[v ] is list of vertices w such that (v ,w) ∈ E )
(representing current digraph).

I We can easily remove the full A[v ] when we “eliminate” v .

I But looking at A[v ] does not tell us anything about edges incoming to v .

I How do we update the details of reduced in-degree for remaining vertices?

NOTICE the ‘algorithm only wants us to know the NUMBER of (remaining)
incoming edges to v , not the specifics
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Q5: “cute” topological sort

Given directed acyclic graph G = (V ,E ): repeatedly find a vertex of in-degree 0,
output it, and then remove it and all of its outgoing edges from the graph.

I Define auxiliary integer array B of length n = |V | such that B[v ] is the
number of incoming edges to v .

I Also maintain a list Z of unprocessed “in-degree 0” vertices.

Need to initialise B at the start of our algorithm - by processing each of the A[v ]
lists one-by-one, adding 1 to B[w ] whenever we see w in an adjacency list.

This pre-processing takes
∑

v∈V Θ(out-degree(v)), which is Θ(m) overall.

Then a linear pass (Θ(n) total) through B searching for vertices which
have B[v ] = 0, adding any such v to Z .
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Q5: “cute” topological sort

the iteration: Choose the first item v from Z , delete it (Θ(1) time for a list),
then examine the items in A[v ] one-by-one;

I for every w in A[v ], decrement B[w ] by 1,

I if the decrement makes B[w ] be 0, then also add w to Z (Θ(1) time).

Processing A[v ] this way takes Θ(out-degree(v)) time in total.

We only do this work when we remove v from Z , which can happen at most
once (once B[v ] becomes 0 we have exhausted all incoming edges and will never
consider B[v ] again).

Overall we could take
∑

v∈V Θ(out-degree(v)) time, which again is Θ(m) overall.

Therefore we take Θ(n) +Θ(m) +Θ(n) +Θ(m) time, which is Θ(n +m).
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Q5: “cute” topological sort

(b) How will you detect that the graph has cycles?

answer: The graph is acyclic if and only if we can eliminate all edges from the
graph by following the rule of delete outgoing edges of a vertex with (current)
in-degree 0.

We will notice that the graph has cycles if at some point the list L contains no
vertices to work-with, but A[w ] is non-empty for some vertices w .

(draw a picture)
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Q6: “partial” QuickSort (optional)

Design an algorithm to sort to sort and return the least k elements of a list
that uses the same Partition subroutine of quicksort. How does the worst case
execution time of this algorithm compare to that of quicksort?

answer: See Algorithm 1. This algorithm is similar to quicksort, but where
quicksort always recurses on the upper partition, partialQuicksort only recurses
when the index of the split is less than k − 1 (assuming we have 0 as the first
index).

Algorithm partialQuicksort(A, i , j , k)

1. if i < j and k > 0 then

2. split ← Partition(A, i , j)

3. partialQuicksort(A, i , split − 1, k)

4. if (split − i) < k then

5. partialQuicksort(A, split + 1, j , (k + i − split))
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Q6: “partial” QuickSort

How does the worst case execution time of this algorithm compare to that of
quicksort?

Shockingly, the worst-case running-time is still Ω(n2), even when k is
small, say k = 2.

To see this consider the input array

1, 2, 3, . . . , n − 1, n.

In the n/2 iterations of partialQuicksort, Partition “removes” one extra element
each time (always a high element, making the rhs of the partition).

Therefore we will not enter lines (d)/(e) of partialQuicksort, and only have one
recursive call.

We have an invariant for these first n/2 iterations:

(IN) After the hth iteration, the (single) recursive instance of partialQuicksort is:

1, 2, 3, . . . , n − h.
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Q6: “partial” QuickSort (optional)

(IN) After the hth iteration, the (single) recursive instance of partialQuicksort is:

1, 2, 3, . . . , n − h.

Each of the first n/2 iterations is guaranteed to take place:

I after all, we still have not isolated the elements 1 or 2.

For each of these first n/2 calls, the subarray has ≥ n/2 elements, hence Partition
takes Ω(n) time.

In total we have at least n/2 recursive calls, taking (n/2)Ω(n) in total, which is
Ω(n2).
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