
Introduction to Algorithms and Data Structures

Tutorial 6

your tutor

University of Edinburgh

27th-31st January, 2025

IADS (2024/25) – Tutorial 6– slide 1

Q1: Dijkstra’s Algorithm worked example

I Start with the d , π arrays initialised to ∞ and null.

I 0 is the initial vertex being added to the set S (with distance 0), so after
that we have the following update to d (no update to π yet):

0 ∞ ∞ ∞ ∞
0 1 2 3 4

IADS (2024/25) – Tutorial 6– slide 2

Q1: Dijkstra’s Algorithm worked example

I (S = {0}) Examine the outgoing edges from {0} to V \ S = {1, 2, 3, 4}:

(0→ 1): cost d [0] + 2 = 2

(0→ 2): cost d [0] + 4 = 4

(0→ 4): cost d [0] + 5 = 5⇒ encode all options into d , π and commit vertex 1 (cheapest) to S
0 2 4 ∞ 5 null 0 0 null 0
0 1 2 3 4 0 1 2 3 4

IADS (2024/25) – Tutorial 6– slide 3

Q1: Dijkstra’s Algorithm worked example

I (0→ 2): (already fringe, cost 4)
(0→ 4): (already fringe, cost 5)
(1→ 2): New fringe, cost is d [1] + 3 = 5
(1→ 4): New fringe, cost is d [1] + 2 = 4. Better option for d [4], π[4]⇒ Commit a cost-4 option, eg (0→ 2): S ← {0, 1, 2}, update d [4], π[4]:

0 2 4 ∞ 4 null 0 0 null 1
0 1 2 3 4 0 1 2 3 4

IADS (2024/25) – Tutorial 6– slide 4

Q1: Dijkstra’s Algorithm worked example

I No new fringe edges this time.⇒ Commit 4 to S via (1→ 4), S becomes {0, 1, 2, 4}, no updates to d , π.

0 2 4 ∞ 4 null 0 0 null 1
0 1 2 3 4 0 1 2 3 4

After S becomes {0, 1, 2, 4}, no fringe edges any more (3 has no incoming edges).
Hence the algorithm terminates with this p, π.

IADS (2024/25) – Tutorial 6– slide 5

Q2: fractional knapsack

Input: Values vi ∈ N and sizes wi ∈ N for i = 1, . . . , n
(“item i has value vi and size wi”).
Capacity C ∈ N (“size of the knapsack”).

Fractional knapsack: We want to choose fractional weights xi ∈ [0, 1] for every
i ∈ [n] so that we maximize the total weighted value (while fitting in the C):

max

n∑
i=1

xi · vi (1)

subject to xi ∈ [0, 1], i = 1, . . . , n and
n∑

i=1

xi · wi ≤ C (2)

Want highest-valued total knapsack i (as measured in (1)).

IADS (2024/25) – Tutorial 6– slide 6

Q2: fractional knapsack

Suggest to apply the greedy heuristic by choosing some item i “greedily” and
adding the largest possible fraction 0 < xi ≤ 1 of item i that is possible to fit in
the (current) leftover capacity of the knapsack, without violating C .

We can think about 2 different greedy rules to select the next item i :

(a) Add the item with the largest vi value among all remaining items.

(b) Add the item with the largest vi/wi ratio among all remaining items.

All students should have tried an example to understand workings!

Does (a) give optimal result on your example?

Does (b) give optimal result on your example?

IADS (2024/25) – Tutorial 6– slide 7

Q2: fractional knapsack

(i): We need to show that “largest vi first” fails on some instances.

Here is a specific input to demonstrate non-optimality:
values v1 = 3, v2 = 3, v3 = 4, v4 = 5,
weights w1 = 3,w2 = 4,w3 = 4,w4 = 9,
capacity C = 12.

Consider the items in order of value: i = 4, then i = 3, finally i = 1, 2.

Taking i = 4: take entire item (as w4 < 12) ⇒ x4 ← 1 and C ′ ← 12 − 9 = 3.

Next i = 3: we have w3 = 4, so we can’t fit all of item i = 3⇒ set x3 ← (C ′/w3)-
fraction, which is x3 ← 0.75, with the new C ′ ← 3 − w3 · 0.75 = 0.

Leftover capacity is now 0, so we don’t consider i = 1, i = 2.
We have x1 = 0, x2 = 0.

The total value we get with this version of Greedy is 5 + 0.75 · 4 = 8.

However, we can get 10.5555555. . . by taking x1 = 1, x2 = 1, x3 = 1, x4 = 1/9.

IADS (2024/25) – Tutorial 6– slide 8

Q2 (b): fractional knapsack

(ii) We have to prove that “largest vi/wi first” is guaranteed to construct an
optimal assigment for x1, . . . , xn for the input.

Like in class with Dijkstra’s Algorithm, we might try a proof by induction
(need to think about Induction Hypothesis. Not easy!)

Induction Hypothesis (I.H.): For the set I of top-ranked k items (according to
the vi/wi ranking), there is some optimal solution x ′1 , . . . , x

′
n such that x ′i = xi

for i ∈ I .

Base case: Case of I = ∅ (“top 0 items”), vacuously true.

Induction step: We assume the (I.H.) for the top-ranked item set I (some size
k). Need to show we can have the same property, after adding “next most highly
ranked item” i∗.

IADS (2024/25) – Tutorial 6– slide 9

Q2 (b): proving the “Induction step”

Induction step: We assume the (I.H.) for the top-ranked item set I (k = |I |).
Need to show same for I ∪ {i∗} (for “next most highly ranked item” i∗).

Let valopt be the total value
∑

i∈[n] x
′
i · vi of “working optimum assignment x”.

For the current working optimum x ′, compare x ′i∗ to xi∗ .

If xi∗ = xi∗ already, Induction step done.

x ′i∗ 6= xi∗ More interesting case

We know . . .

I greedy (b) that greedy always sets xi to the maximum possible, which is

xi ← min{1, C
′

wi
} (for the current remaining capacity C ′).

I (I.H.) says xi = x ′i for all the items considered before i∗ (items in I).

Hence the leftover capacity for the [n] \ I items is identical for x and x ′.

I There is no way x ′i∗ can be bigger than the greedy (b) value.⇒ only way x ′i∗ and xi∗ can differ is if x ′i∗ < xi∗ . kind of counter-intuitive!

IADS (2024/25) – Tutorial 6– slide 10

Q2 (b): proving the “Induction step”

Big step: We will show how to change x ′ to get x ′i∗ = min{1, C ′

wi∗
}) (like x) but

also keep optimal value valopt .

Consider some j ∈ [n] \ I ∪ {i∗} with x ′j > 0 such that x ′j > xj .
(*) There must j ∈ [n]\I ∪{i∗} . . . if not, we would have spare capacity to increase
the value of x ′i∗ in x ′, and get solution bigger than valopt (a contradiction).

“Re-distribute” the extra item weight (x ′j − xj)wj (for x ′) towards the i∗ item.
We do not know how much we can add to x ′i∗ so allow scaling by any α > 0:

I We reduce x ′j to now be x ′j − (x ′j − xj)α

I We increase x ′i∗ to now be x ′i∗ + α(x
′
j − xj)

wj

wi∗
.

I These two changes to x ′ ensure that the new x ′ has identical total item
weight to before (check calc), hence the total capacity is unchanged.

I The reduction of value x ′j will reduce valopt by vj(x
′
j − xj)α,

I The increase to value x ′i∗ will increase valopt by α(x ′j − xj)
wj

wi∗
· vi∗

IADS (2024/25) – Tutorial 6– slide 11

Q2 (b): proving the “Induction step”

Difference in values is

α(x ′j − xj)
wj

wi∗
· vi∗ − vj(x

′
j − xj)α

= α(x ′j − xj)

(
wj

wi∗
· vi∗ − vj

)
I We know vi

wi
≤ vi∗

wi∗
for every i ∈ [n] \ I ∪ {i∗}, which implies vj ≤ vi∗

wi∗
· wj .

I We have α > 0

I We know (x ′j − xj) > 0⇒ overall change to valopt is non-negative.⇒ can use any extra weight from any x ′j for j ∈ [n] \ I ∪ {i∗} to strictly increase
the value of x ′i∗ without hurting valopt . Iterate until x ′i∗ achieves the value

min{1, C ′

wi∗
}. We will get an x ′ with value valopt where x ′i∗ = xi∗⇒ top |I |+ 1 ranked items match x . Induction Step is complete.

By induction, we have that there is an optimal solution x ′ such that x ′i = xi for
all i ∈ [n].

IADS (2024/25) – Tutorial 6– slide 12

Q2 (b): an alternative proof (from class discussions)

unit-weight fractional knapsack: Set of items i = 1, . . . , n of unit
weight each, and with values v1, . . . , vn ∈ Q+ respectively. Capacity C ∈ N.

Idea is to transform general weighted fractional knapsack (with wi ∈ N
values), to an equivalent instance with unit-weights.

item i : weight wi , value vi ⇔ wi different items, each value vi/wi

capacity C ⇔ capacity C

n original items ⇔ ∑n
i=1 wi items altogether (call this n̂)

I We can argue equivalence of Greedy (b) on unit-weight fractional
instance and the original weighted fractional knapsack instance.

I Then we prove correctness of Greedy (b) for the unit weight case.

I Simpler proof.

I Check solutions .pdf for proof.

IADS (2024/25) – Tutorial 6– slide 13

Q3 (a): 0/1 knapsack

Algorithm maxKnapsack(w1, . . . ,wn, C)

1. initialise row 0 of kp to “all-0s”

2. initialise column 0 of kp to “all-0s”

3. for (i ← 1 to n) do

4. for (C ′ ← 1 to C) do

5. if (wi > C ′) then

6. kp[i ,C ′]← kp[i − 1,C ′]

7. else

8. kp[i ,C ′]← max{kp[i − 1,C ′], kp[i − 1,C ′ − wi] + vi }

9. return kp[n,C]

kp(k + 1,C ′) =

{
kp(k ,C ′) wk+1 > C ′

max {kp(k ,C ′), vk+1 + kp(k ,C ′ − wk+1)} otherwise

IADS (2024/25) – Tutorial 6– slide 14

Q3 (b): 0/1 knapsack

The following is the main dynamic programming table, where the cell value for
(i , j) is the value of the “max-knapsack which uses items 1 to i to achieve weight
at most j”.

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 0 0 2 2 2 2 2
2 0 0 3 3 3 5 5 5
3 0 0 3 4 4 7 7 7

IADS (2024/25) – Tutorial 6– slide 15

Q3 (c): 0/1 knapsack

Greedy algorithm (b) will not deliver an optimal solution for all instances of the
0/1 knapsack problem.

One counterexample is v1 = 3, v2 = 5, v3 = 2 and w1 = 3,w2 = 4,w3 = 2.
C = 5

In this case Greedy (b) will first add item 2 (v2/w2 = 1.25).
Next have residual capacity C ′ = 5 − 4 = 1, and in the 0/1 setting, this means
that we cannot add any extra items (as weights are 2 and 3),
Hence we return value 4.

Optimum is taking items 1 and 3: use capacity 3 + 2 = 5 = C , get value
3 + 2 = 5

IADS (2024/25) – Tutorial 6– slide 16

