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“Polynomial-time”

We have seen a large pool of algorithms in this course:

I Insertion sort - worst-case running-time Θ(n2)

I Mergesort - worst-case running-time Θ(n · lg(n))
I Breadth-First search - worst-case running time Θ(m + n) (where n is the

number of nodes and m the number of edges)

I Edit distance - worst-case running-time Θ(m · n)
I All-pairs Shortest-Paths - worst-case running-time Θ(n3)

These worst-case running-time (asymptotic) functions all fit into the category of
polynomial-time.

We say that a computational problem is “polynomial time” if we have
a deterministic algorithm A solves the problem (is correct for every
instance of the problem) and there is some fixed r ∈ R such that for
every instance I, the algorithm runs in time at most O(|I|r ).
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Cycles in Graphs

We return to the world of (undirected) graphs G = (V ,E ).

I An Euler tour (ET) of a given graph is a cycle in the graph which traverses
every edge exactly once (though may visit vertices more than once).

I A Hamiltonian cycle (HC) of a graph is a simple cycle of the graph which
visits every node exactly once.

II
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Cycles in Graphs

Consider the problem of testing whether a given graph has an ET/HC.

I For Euler tours, Euler proved (as a generalisation of the Königsberg Bridge
Problem) that any connected graph which only has even-degree vertices
has an Euler tour.

I Connectedness can be checked in Θ(n+m) time (DFS, lecture 15) . . .
I We can check the even-ness of all vertex degrees in O(m+ n) time . . .
I So testing for presence of an Euler tour is “polynomial-time” (“in P”)

I The Hamilton Cycle problem is believed to be NP-complete - and to have
no polynomial-time algorithm.
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Verifying versus Finding

We think (mainly) about “Decision problems” where we ask questions like

I “Does this graph have an Euler tour?”

I “Does this graph have a Hamiltonian Cycle?”

(ie, “Does this graph have a simple cycle of length n?”)

I “Is the edit distance between these two sequences less than 5”?

Can often re-cast an optimisation problem as a decision problem . . . eg, decision
version of edit distance above.

IADS – Lecture 25– slide 5



NP: “Guess and Check”

The complexity class NP is essentially a“Guess and Check” model.
It includes any decision problem for which:

I A solution can be written down succinctly in terms of the given input.

I We can check whether a “guessed” solution is correct in polynomial time.

I We do not worry about how we found/guessed the solution (the “magic”)
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Guessing and Checking

II

I Guess a HC, for example: a, q, r , s, b, c , d , x , y , z , e.
I Need to check each pair of vertices have an edge between (yes), plus

that (e, a) ∈ E (no), plus each vertex visited exactly once (yes).
I Check details proposed HC against graph adjacency list/matrix.

I Similarly could guess and check a proposed ET, for example:
(a, q), (q, b), (b, s), (s, r), (r , q), (q, s), (s, a), (a, r), (r , b), (r , c), (c , d),
(d , y), (y , x), (x , z), (z , y), (y , e), (e, x), (x , d), (d , z), (z , e), (e, c), (c , a)
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Polynomial-time problems

All the algorithmic problems we have considered in this course have formal
definitions, and inputs in a prescribed form.

I We assume the input is described non-wastefully, ie integers should be
represented by binary numbers, or maybe decimal numbers, but not in
unary format.

I In fact, even graphs, edges can be described succinctly in binary format.

I Such a sensible representation is called an encoding.

Definition
A computational problem Q is “polynomial time” if there is some fixed r ∈ R,
and some deterministic algorithm A, which returns a correct solution for every
instance I in time at most O(|I|r ).

We have also seen some “pseudopolynomial-time” algorithms in this course - for
example, the 0/1 Knapsack problem.
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Decision problems

Definition
A computational problem Q is a decision problem if it can be described in terms
of a collection of potential solutions S , where Q(I) = 1 if there is a solution
in S which solves the instance I and Q(I) = 0 otherwise.

We will often consider decision problems as languages (over alphabet {0, 1})
where I ∈ LQ ⇔ Q(I) = 1.

Definition
The complexity class P is the class of decision problems Q for which there is a
polynomial-time algorithm to compute Q exactly on all input instances.

Informally, we will often include (non-decision) problems (like edit distance,
sorting) in the class P.

IADS – Lecture 25– slide 9



The complexity class NP

Definition
Consider a decision problem Q wrt its collection of potential solutions S . We say
that a two-parameter algorithm A is a verifier for Q iff for all instances I of Q

There is some y ∈ S such that A(I, y) = 1 ⇔ Q(I) = 1

I y is the “guess”

I Sometimes the (successful) solutions of S are called certificates.

I For the Hamilton Cycle problem, the solutions/certificates would be
permutations of the vertices of the graph.

I This verifier corresponds to the informal “checker” of our introduction.

I But we say do not say (and will not be drawn . . .) on where the guess
comes from. That’s “magic”.
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The complexity class NP

Definition
The complexity class NP is the class of decision problems Q (wrt a collection of
potential solutions/certificates S) for which there is a verifier A = A(I, y) which
runs in time polynomial in the size |I| of the instance.

(note this requires that the solution/certificate y is polynomial in |I| also)

We do not concern ourselves with how the solution/certificate is “guessed”.

I This is the power of the model NP, it allows us to capture decision
problems which (we believe) have no polynomial-time algorithms to solve
them.

I Think about Hamilton Cycle - if we really were “guessing” the solution, we
would be considering n! different permutations, which is exponential in the
size of the graph.

I For a problem in P (like the Euler Tours problem) the guess can be the
empty string.
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Reductions between (decision) problems

If I could solve problem Q in polynomial-time, then I would also be
able to solve problem R in polynomial-time.

Definition
A problem R can be reduced to the problem Q if there is a polynomial-time
computable function f : {0, 1}∗ → {0, 1}∗ such that for all instances I of R

R(I) = 1 ⇔ Q(f (I)) = 1

I Means that R is no harder (at least in the sense of polynomial-time
computation) than Q. And that Q is “at least as hard” as R.

I We write R ≤P Q.
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NP-completeness

No (NP) problem is any harder than me.

Definition
A decision problem Q is said to be NP-complete if it belongs to the class NP,
and it is also the case that for every problem R in NP, R ≤P Q.

Do these even exist?

Yes they do! In lecture 26, we will discuss the intrinsic NP-complete problem
Sat, and show how to reduce other computational problems to Sat.
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Reading

Reading:

CLRS If working with CLRS, read Chapter 34 intro and 34.1 for
concepts of polynomial-time, decision problems, and the
complexity class P. Also 34.2 and the early part of 34.3.

Algs.Illum. If using “Algorithms Illuminated” by Roughgarden, read 19.2,
19.3, 19.5, 19.6.

KT If using Kleinberg & Tardos, read 8.1, 8.2, 8.4.
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