
Informatics 2 – Introduction to Algorithms

and Data Structures

Lab Sheet 5: Edit distance in Python

week 2, semester 2: 3rd-7th 2025

In this Lab Sheet, we will step through the implementation of the Edit distance dynamic
programming algorithm (covered in lecture 20). We know that attendance for the labs in
week 2 was pretty quiet - so please feel free to also work on the Labsheet 4 this week.

Most of the basic concepts you need to develop implementations have been introduced in
earlier Labs - how to define arrays (including multi-dimensional arrays), print functionality,
and timing-of execution using timeit. Please ask your demonstrator if you are struggling
with anything.

1 Edit Distance

In this section we will experiment with a variety of implementations of edit distance. To this
end, please start a new Python file called editdistance.py to store your implementations
of these functions.

1.1 Array-based Implementation

The first implementation we will attempt is the straightforward dynamic programming
algorithm we developed in class, where we fill all entries within two (m + 1) × (n + 1)
arrays/tables d and a in order of increasing row index i (and within that row, in order of
increasing column index j). You should define this function as

def edit_dyn(s, t):

1.2 Printing the optimal alignment

Lecture slides 18 contain a discussion of how we can use the arrays d and a to actually find
an alignment that meets the edit distance. Extend your code for edit_dyn to implement
the ideas there to display the/a optimal alignment for the input sequences. Here are some
sample outputs we would expect to see:

>>> editdistance.edit_dyn("house", "home")

1



h o u s e

h o - m e

(or maybe h o m - e on the bottom)

>>> editdistance.edit_dyn("biddable", "routinely")

- b i d d a b l e

r o u t i n e l y

>>> editdistance.edit_dyn("biddable", "inability")

b i d d a b - l - - e

- i - n a b i l i t y

For this task, it may help to consider the discussion/details at the end of lecture 18.

Be aware that for getting the alignment to appear on the screen, we can avoid the automatic
“newline” by specifying a particular end character, for example: print(x, end = ’ ’)

An alternative way to approach the task of building the optimal alignment is to define two
recursive functions inside edit_dyn, one function to build the alignment of string s (the
string s, with embedded ’-’ characters) from table a, and the other to build the alignment
of string t. Then after those two functions have returned the results, we can just print the
padded version of s followed by printing the padded version of t.

1.3 “Memoization” as an alternative

We could alternatively have written a recursive algorithm for edit distance, and then used
memoization to eradicate the repeated re-computations. In this case the memo needs to
work with two arguments :

• If it finds the solution for s,t already stored within the memo, it returns that value.

• Alternatively, if the value has not been computed yet, it makes the necessary com-
putations (possibly including recursive calls) to compute the solution, but then adds
this solution to the memo for s,t before return-ing the answer.

For experimenting with the memoization, we will just focus on computing the edit distance
(and not worry about computing/displaying the alignment afterwards). You will/should
start by implementing a näıve recursive version of this algorithm (named edit_rec, say).

After that is done, there are a number of ways of achieving memoization in Python.

• We can follow the same approach as we did with the memoization of fib in Lecture
18, except this time defining a 2-parameter version of memoize (to handle the fact
that edit distance takes two parameters, s and t).

• There is a higher-order function called lru_cache from the functools module which
can be used to take care of the memoization for you. To use this “decorator” function,
you just need to import the functools module at the beginning of your Python file,
and then to apply the decorator immediately before the definition of your recursive
function:

2



@functools.lru_cache(maxsize=None)

def edit_rec(s,t):

You should set up some experiments to compare the running-times of edit_dyn and edit_rec

against your memoized version of the recursive implementation, using timeit to evaluate
the times. You should consider reasonably long pairs of strings (say 15 characters or more,
for each) to see the effect of the memoization.

Mary Cryan, 2nd February 2025

3


	Edit Distance
	Array-based Implementation
	Printing the optimal alignment
	``Memoization'' as an alternative


