
Informatics 2 – Introduction to Algorithms

and Data Structures

Solutions for Tutorial 6

Mary Cryan

week 3: 27th-31st January, 2025

1. Execute Dijkstra’s Algorithm from node 0 on the following graph, showing the steps/updates
to the d and π arrays.

answer: I was vague about how much detail I want for the solution, but had been
thinking simpler rather than detailed . . . hence skipping the Heap details. However,
given that I asked for both the d, π arrays, some people may have worked wrt the final
implementation.

Therefore I will take the convention that I do update d, π with values whenever a
better fringe edge option becomes available, even if it is not the committed vertex. I
will indicate “addition to S” by using bold font in the arrays.

We start with the d array (of length 5) initialised to ∞ everywhere, and the π-array
initialised to null.

0 is the initial vertex being added to the set S (with distance 0), so after that we have
the following update to d (no update to π yet):

0 ∞ ∞ ∞ ∞
0 1 2 3 4

We next examine the outgoing edges from 0 to {1, 2, 3, 4} - there are edges of weight 2
(to 1), weight 4 (to vertex 2) and weight 5 (to vetex 4).

Hence our three fringe edges have the costs d[0]+2 = 2 (for (0→ 1)), d[0]+4 = 4 (for
(0→ 2)) and d[0] + 5 = 5 (for (0→ 4)); hence we add vertex 1 to S, setting d[1]← 2
and π[1]← 0.

1

0 2 4 ∞ 5 null 0 0 null 0
0 1 2 3 4 0 1 2 3 4

After this step, the fringe edges (0 → 2) (with cost 4) and (0 → 4) (with cost 5) are
still fringe edges; and we have two new fringe edges (1→ 2) and (1→ 4); Overall the
current costs of our fringe edges are:

(0→ 2): (with cost 4, already shown in the d[2], π[2] cells)

(0→ 4): (with cost 5, already shown in the d[4], π[4] cells)

(1→ 2): Cost is d[1] + 3 = 5

(1→ 4): Cost is d[1] + 2 = 4. This will give a new/better option for 4.

We can take either of the cost-4 options, let’s choose (0 → 2); hence 2 is committed
to S, which becomes {0, 1, 2}, and we fix d[2], π[2] to these values. We also use the
details of the (1→ 4) edge to update d[4], π[4]:

0 2 4 ∞ 4 null 0 0 null 1
0 1 2 3 4 0 1 2 3 4

Now the newly-added vertex 2 only has one outgoing edge, and it is (2 → 1), so
within S; hence we have no new fringe edges. We have lost two prior fringe edges (the
two leading to 2), hence we just commit 4 to S via the better route, which is already
encoded in the arrays.

0 2 4 ∞ 4 null 0 0 null 1
0 1 2 3 4 0 1 2 3 4

So we have S = {0, 1, 2, 4}, but no fringe edges any more.

Hence the algorithm terminates with this p, π.

2. For this question, the first thing to do will be to talk a bit about the way these Greedy
strategies will operate in the context of fractional knapsack, before you actually present
the specific answers to (a) and (b).

I think the most important thing with new questions like this is to help students
understand the notation. So to give an example with about 4 items maybe, and write
out the values as numbers (with vi annotations), same for the weights, and then pick
a capacity C that will make things (slightly) interesting.

It may be wise to actually run the two Greedy strategies on an example, step by step.
May be nice to use the example in (i) which gives the counter-proof for strategy (a).

(i) Here is a specific input which will demonstrate the non-optimality of the “largest
vi first” strategy: values v1 = 3, v2 = 3, v3 = 4, v4 = 5, weights w1 = 3, w2 =
4, w3 = 4, w4 = 9, capacity C = 12.

In this case we will consider the items in order of value, so will consider items in
order of index i = 4, i = 3, i = 1, 2.

Taking i = 4 first, we take that entire item (as w4 < 12), and set x4 ← 1 and
C ′ ← 12− 9, C ′ ← 3.

Next we consider item i = 3, we have w3 = 4, so we can’t fit all of item i = 3:
we must set x3 ← (C ′/w3)-fraction, which is x3 ← 0.75, with the new C ′ ←
3− w3 · 0.75 = 0.

2

At this point the leftover capacity is now 0, so we don’t consider the other items.
We have x1 = 0, x2 = 0.

The total value we get with this version of Greedy is 5 + 0.75 · 4 = 8.

However, it is easy to see by inspection that we could have got a value of
10.555555. . . by taking x1 = 1, x2 = 1, x3 = 1, x4 = 1/9.

(ii) For greedy strategy (b), we need a proof, as we are claiming that when we rank
by vi/wi and consider items i in that order, we are guaranteed to construct an
optimal x1, . . . , xn for the input.

Proof: It is natural to think of designing a proof by induction, but we need to
choose our Induction Hypothesis carefully. We will choose the following:

Induction Hypothesis (I.H.): For the set I of top-ranked k items (according to
the vi/wi ranking), there is some optimal solution x′1, . . . , x

′
n such that x′i = xi

for i ∈ I.

Base case: If we consider the case of k = 0, it is certainly the case that there
is some optimal solution x′1, . . . , x

′
n such that the top-0 items match the values

assigned by greedy (b).

Induction step: We assume the (I.H.) for the top-ranked item set I. Our goal is
to argue that we can then construct an optimal solution which satisfies the (I.H)
for I ∪ {i∗}, where i∗ is the “next most highly ranked item” after the items in I.

We will let valopt be the value
∑

i∈[n] x
′
i · vi.

For the current working optimum x′, compare x′i∗ to xi∗ .

If it is the case that these two values are identical, then we already have shown
the induction step, and we do not need to change x′ (note this includes the case
where both these are 0).

The more interesting argument is when x′i∗ 6= xi∗ .

We know by the rules of greedy (b) that greedy always sets xi to the maximum

possible, which is xi ← min{1, C
′

wi
} (for the current remaining capacity C ′). Our

(I.H.) ensures that xi = x′i for all the items considered before i∗ (items in I).
Hence the leftover capacity for the [n] \ I items is identical for x and x′, and
greedy (b) has set xi∗ to the maximum possible. Therefore, the only way x′i∗ and
xi∗ can differ is if x′i∗ < xi∗ .

We will now show how to transform x′ to a new assignment with x′i∗ = min{1, C′

wi∗
})

where we also maintain overall value valopt.

Consider some j ∈ [n] \ I ∪ {i∗} with x′j > 0 such that x′j > xj .

(*) We assume there must be such a j ∈ [n] \ I ∪{i∗} . . . if this was not the case,
then we would have spare capacity to increase the value of x′i∗ in x′ to achieve an
assignment of value strictly greater than valopt (which itself is a contradiction).

For such a j ∈ [n] \ I ∪ {i∗} with x′j > xj , we will re-distribute the extra item
weight (x′j − xj)wj (for x′) towards the i∗ item. We do not know whether x′i∗ is
small enough to absorb all possible extra weight from j, hence we will consider
scaling by any α > 0:

– We reduce x′j to now be x′j − (x′j − xj)α
– We increase x′i∗ to now be x′i∗ + α(x′j − xj)

wj

wi∗
.

3

– These two changes to x′ ensure that the new x′ has identical total item
weight to before, hence the total capacity is unchanged. Check this!

– The reduction of value x′j will reduce valopt by vj(x
′
j − xj)α,

– The increase to value x′i∗ will increase valopt by α(x′j − xj)
wj

wi∗
· vi∗

We consider the difference

α(x′j − xj)
wj

wi∗
· vi∗ − vj(x′j − xj)α

= α(x′j − xj)
(
wj

wi∗
· vi∗ − vj

)
We know that vi

wi
≤ vi∗

wi∗
for every i ∈ [n] \ I ∪ {i∗} (including j), which implies

vj ≤ vi∗
wi∗
· wj . We also know that α > 0 and (x′j − xj) > 0, hence the overall

change to valopt is non-negative.

We have shown how we can use any extra weight from any x′j for j ∈ [n]\I∪{i∗} to
strictly increase the value of x′i∗ without reducing our value from valopt. We can

iterate this until x′i∗ achieves the value min{1, C′

wi∗
} . We know from (*) above

that until xi∗ achieves this value, that there must be j indices with x′j > xj .
Hence we are guaranteed to build an assignment x′ with value valopt where x′i∗
has the value assigned by greedy Criterion (b).

After this step, we have constructed an optimal x′ where the top |I|+ 1 ranked
items match the values assigned by greedy (b), completing the Induction Step.

By induction, we can therefore infer that there is an optimal solution x′ such
that x′i matches the value assigned by greedy (b) for every i ∈ [n]. Hence we
have proven our claim. �

Alternative approach: Some students on the class (Hubert Wach, Jonathan
Ambler, and others who spoke to me at lectures) suggested a way we could
potentially simplify the proof, if we were to normalise the input to an “weights
all 1” version. We have discussed, and it is possible to get a simpler proof this
way, given the original assumption that all weights were from N (as was the case
in our problem statement). It’s not massively shorter, but is more intuitive.

unit-weight fractional knapsack: We are given a set of items i = 1, . . . , n
of unit weight each, and with values v1, . . . , vn ∈ Q+ respectively. We are also
given a capacity C ∈ N. Our aim is to find binary values xi ∈ [0, 1], i ∈ [n] such
that

∑n
i=1 xi ≤ C and such that

∑n
i=1 xi ·vi is maximised subject to the capacity

constraint.

(note: we need to allow the values to be rational numbers, as in our proof we
will build unit-weight instances which have values vi/wi)

Alternative proof for the weighted knapsack:

I. Every input instance of weighted fractional knapsack wi ∈ N, vi ∈
N, i ∈ [n] and capacity C ∈ N can be transformed to an equivalent instance of
unit-weight fractional knapsack where we have the same capacity C
and where a single item i of value vi and weight wi gets mapped to wi new
unit-weight items with value vi/wi. There will be a total of n̂ =

∑n
i=1 wi

items in this unit-weight instance.

4

item i: weight wi, value vi ⇔ wi different items, each value vi/wi

capacity C ⇔ capacity C

n original items ⇔
∑n

i=1 wi items altogether (call this n̂)

We can define a “break-ties” ordering on the items of the unit-weight con-
struction which groups the unit-weight items from the same item i together.
When we do this, the operation of Greedy (b) on the constructed unit-weight
instance is equivalent to the operation of Greedy (b) on the original instance
(we assign xi on the original instance to be the sum of the x-values for its
corresponding unit-weight items).

II. We will prove that the Greedy Algorithm ranking according to (b) is guar-
anteed to return an optimal solution for every instance of unit-weight
fractional knapsack.

Proof of II. In the unit-weight case of fractional knapsack we assume all
weights are 1, and we allow the values v̂i (for i ∈ [n]) to be any positive rational
numbers. We can assume n > C (if not, then the capacity allows us to set xi ← 1
for all items, and optimal and Greedy (b) are exactly the same). N

We observe that (since all vi are > 0) if n > C, we expect an optimal x′ solution
to satisfy

∑n
i=1 x

′
i = C (to use all capacity).

We observe that Greedy (b) always constructs a solution which uses all capacity
(assuming n > C).

Now let us consider the first step of Greedy (b), assuming C > 0.

– Let i∗ be the item of maximum value v̂i∗ in the collection of items.

– Greedy (b) chooses this item to add to the knapsack, setting xi∗ ← min{1, C},
which (as C is a whole number, and C > 0) is 1.
We will show there must be some optimal solution x′ with x′i∗ = 1.
The reason is as follows: consider the optimal solution x′ which has the
maximum assignment to x′i∗ among all optima. Suppose that this x′i∗ is not
equal to 1. Then we can find j ∈ [n] \ {i∗} such that x′j > xj (due to our
observations that both optimal x′ and Greedy (b) x will use all of C).
By choice of i∗, we know that v̂i∗ ≥ v̂j .
Hence we can transform x′ by increasing x′i∗ by min{1 − x′i∗ , x′j − xj} and
decreasing x′j by the same amount . . . and the value of x′ does not decrease.
This contradicts the choice of x′ being the one with maximum value x′i∗
(among all optimum assignments x′) Hence there is an optimum assignment
x′ with x′i∗ = 1 = min{1, C}, just as Greedy (b) has assigned.

This above justifies the initial step of Greedy (b), taking the first item.

If we had C = 1, then this is also the final step of Greedy (b), and we are finished.

Otherwise, we note that continuing Greedy (b) is equivalent to the new instance
(v̂i, i ∈ [n] \ {i∗} with C − 1) of unit-weight fractional knapsack. We can
apply induction to infer that there is an optimal assignment that matches the
one constructed by Greedy (b).

note: something to think about is what Greedy (a) will achieve for the special case of
unit weights.

5

3. (a) The algorithm is driven by two nested for-statements, the outer iterating n times,
the inner one iterating C times. The statements within the inner loop just carry
out Θ(1) operations (comparison, addition, subtraction) on each iteration, so
overall Θ(nC) time.

(b) The following is the main dynamic programming table, where the cell value for
(i, j) is the value of the “max-knapsack which uses items 1 to i to achieve weight
at most j”.

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 0 0 2 2 2 2 2
2 0 0 3 3 3 5 5 5
3 0 0 3 4 4 7 7 7

(c) This proposed Greedy algorithm will not deliver an optimal solution for all in-
stances of the 0/1 knapsack problem.

One counterexample is v1 = 3, v2 = 5, v3 = 2 and w1 = 3, w2 = 4, w3 = 2. C = 5

In this case Greedy (b) will first add item 2 (v2/w2 = 1.25). We then have
residual capacity C ′ = 5 − 4 = 1, and in the 0/1 setting, this means that we
cannot add any extra items (as weights are 2 and 3), hence we return value 4.

However, if we had taken items 1 and 3, we would have used capacity 3 + 2 =
5 = C, and would have achieved value 3 + 2 = 5.

6

