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m ≥ 3

What if there are only 2 candidates?
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If there are two candidates  and , then for every voter , either 

 or .
a b i ∈ N

a ≻i b b ≻i a

Majority Voting Rule: If at least  voters have , elect , 
otherwise elect . 

⌈n/2⌉ a ≻i b a
b

Threshold  Voting Rule: If at least  voters have , elect 
, otherwise elect , for some . 

(τ) τ ⋅ ⌈n/2⌉ a ≻i b
a b τ ∈ [0,1]

Majority is Threshold . (1)
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Truthfulness
Claim: For settings with two candidates, every Threshold Voting Rule is 
truthful. 

Proof: A simple monotonicity argument: Assume  is the winner, and 
consider a voter .

a
i

If , then  already has its top choice elected.a ≻i b i

If , then if voter  misreports ,  would still be 
elected, since it is still “above the threshold”. 

b ≻i a i a ≻′ i b a
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Generalising for m ≥ 3
Majority Voting Rule: Consider any pair of candidates  and . If at 
least  voters have , give a point to , otherwise give a 
point to . 

a b
⌈n/2⌉ a ≻i b a

b

Elect the candidate with the most points in the end.

In words, Majority elects a candidate that wins a pairwise majority vote 
against any other candidate. 

By the GS Theorem, this voting rule cannot be truthful, as it is onto, 
but not a dictatorship. 
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Condorcet Examples

Consider the following preference ranking profile:

Alice: a ≻ b ≻ c

Bob: b ≻ c ≻ a

Caroll: c ≻ a ≻ b

How many points does  get?a

How many points does  get?b

How many points does  get?c

There is no pairwise majority winner!  
The best we can do is select on candidate arbitrarily!

Assume that we select .a
Bob could instead report: c ≻ b ≻ a  would be the (Condorcet) winner.c
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Cardinal vs Ordinal 
(Randomised) Rules

In simple words: A cardinal voting rule is ordinal if it disregards the 
numbers and only keeps the information about the relative ranking 
between the candidates. 
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The GS Theorem still applies even if we look at cardinal rules. 
This is because every truthful cardinal rule has to be ordinal 
(tutorial). 

The GS Theorem does not apply if we have randomised voting 
rules which are truthful-in-expectation. There are however some 
other theorems that apply (maybe tutorial). 
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Escaping the Gibbard-
Satterthwaite Theorem 

Theorem (Gibbard 73 - Satterthwaite 75): In the unrestricted domain, 
when there are  candidates, a voting rule is truthful and onto if 
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Unrestricted Domain

A social choice function, or voting rule, or mechanism is a function 
 mapping preference profiles to candidates, 


where  is the space of all possible preference profiles. 


The unrestricted domain:  can contain any preference profile. 


i.e., for any voter ,  is the set of all permutations of 
. 

f : ( ≻ )n → A

≻n

≻n

i ∈ N ≻i
{1,…, m}
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e.g., .{−10, − 5, 0, 5, 10, 15, 20, 25, 30, 35, 40}

Let’s say that your ideal temperature would be  degrees.20

It is reasonable to assume that you would also prefer  degrees to  
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25 30
15 10

Generally, the “farther away” we move from your ideal temperature, the less 
happy you become. 

0−5−10 5 10 15 20 25 30 35 40
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Single-Peaked Preferences

Other applications:

Political spectrum (from left to right, from conservative to 
progressive etc). 

Building a library on a street (facility location). 

Introduced by Black in 1948, as a domain for which Condorcet 
winners always exist. 
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 is a Condorcet winner among the peaks.x4 What else is ? x4
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Median Voter Rule: Select the median of the (reported) peaks , i.e.,  
 

xi

f( ≻ ) = med{p1, p2, …, pn}

Theorem: The median voter rule is truthful. 

Proof: Easy, we’ve seen it before.



Median Voter Rule

x1 x2 x3 x4 x5 x6 x7

The proof follows from the same monotonicity argument: To affect the 
median, a voter with  must report something to the right of 
the median. But then the median will move farther away from . 

pi ≤ f( ≻ )
pi



Median Voter Rule

x1 x2 x3 x4 x5 x6 x7

The proof follows from the same monotonicity argument: To affect the 
median, a voter with  must report something to the right of 
the median. But then the median will move farther away from . 

pi ≤ f( ≻ )
pi



Median Voter Rule

x1 x2 x3 x4 x5 x6 x7

The proof follows from the same monotonicity argument: To affect the 
median, a voter with  must report something to the right of 
the median. But then the median will move farther away from . 

pi ≤ f( ≻ )
pi



Median Voter Rule

x1 x2 x3 x4 x5 x6 x7

The proof follows from the same monotonicity argument: To affect the 
median, a voter with  must report something to the right of 
the median. But then the median will move farther away from . 

pi ≤ f( ≻ )
pi



Ordered Statistic Voter Rule

Consider a social choice setting in which the preferences  of the 
voters are single-peaked, and let  be the peak of voter .

≻i
xi i



Ordered Statistic Voter Rule

Consider a social choice setting in which the preferences  of the 
voters are single-peaked, and let  be the peak of voter .

≻i
xi i

-th Order Statistic Voter Rule: Select the -th ordered statistic of the 
(reported) peaks , i.e.,  
 

k k
xi

f( ≻ ) = {pi : pi is at least as large as exactly k peaks.}



Ordered Statistic Voter Rule

Consider a social choice setting in which the preferences  of the 
voters are single-peaked, and let  be the peak of voter .

≻i
xi i

-th Order Statistic Voter Rule: Select the -th ordered statistic of the 
(reported) peaks , i.e.,  
 

k k
xi

f( ≻ ) = {pi : pi is at least as large as exactly k peaks.}

Theorem: For any , the -th order statistic voter rule is truthful. k k



Ordered Statistic Voter Rule

Consider a social choice setting in which the preferences  of the 
voters are single-peaked, and let  be the peak of voter .

≻i
xi i

-th Order Statistic Voter Rule: Select the -th ordered statistic of the 
(reported) peaks , i.e.,  
 

k k
xi

f( ≻ ) = {pi : pi is at least as large as exactly k peaks.}

Theorem: For any , the -th order statistic voter rule is truthful. k k

Proof: Virtually identical to before, check at home. 
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In economics, a rule is “good” when it satisfies certain desirable 
properties (axioms): here truthfulness and onto. 

So, according to our economics interpretation, every -th order 
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k

2. We want to identify (or “characterise”) all good voting rules.

Here, we would like to prove a theorem that says that a voting rule is 
truthful and onto if and only if it looks like something. 

e.g., “A voting rule is truthful and onto if and only if it is a -th order 
statistic voter rule.”

k
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Here,  are the peaks,  are the other possible candidates, which are 
not peaks of any voter. 

xi yi

Here in fact, the median candidate is the Condorcet winner among all 
candidates (not just the peaks).

We can also have any -th ordered statistic among all the candidates.k

y1 y2 y3 y4 y5
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Theorem (Moulin 1980): A voting rule  is truthful, onto, and 
anonymous if and only if there exist  such that for all 

, it holds that 
 

f
y1, y2, …, yn−1

≻

f( ≻ ) = med{p1, p2, …, pn, y1, …, yn−1}

There is also a characterisation without the anonymity property, 
which is slightly more complicated (“Generalised Median Voter 
Schemes”). 

Intuitively, some voters have more “power” than others.

If you are interested, check the AGT book Definition 10.3.
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1. We want a voting rule that is “good”, according to some definition 
of “good”. 

In economics, a rule is “good” when it satisfies certain desirable 
properties (axioms): here truthfulness and onto. 

In computer science, we usually aim to optimise some global 
objective, e.g., maximise the social welfare, or minimise the social 
cost.

Obviously we still want the voting rule to be robust to incentives, so 
we are still interested in truthfulness. 



Let’s become Computer 
Scientists again



Let’s become Computer 
Scientists again

General Question: Among all the truthful voting rules, which one is 
the best with respect to the global objective?



A brief note about 
approximation in CS



A brief note about 
approximation in CS

Approximation algorithms for intractable problems: 



A brief note about 
approximation in CS

Approximation algorithms for intractable problems: 

We are faced with an optimisation problem which is NP-hard 
(e.g., MAX-SAT), so we cannot solve it exactly in polynomial 
time, unless P=NP. 



A brief note about 
approximation in CS

Approximation algorithms for intractable problems: 

We are faced with an optimisation problem which is NP-hard 
(e.g., MAX-SAT), so we cannot solve it exactly in polynomial 
time, unless P=NP. 

We design polynomial-time algorithms which do not achieve an 
optimal solution, but an approximation to it.



A brief note about 
approximation in CS

Approximation algorithms for intractable problems: 

We are faced with an optimisation problem which is NP-hard 
(e.g., MAX-SAT), so we cannot solve it exactly in polynomial 
time, unless P=NP. 

We design polynomial-time algorithms which do not achieve an 
optimal solution, but an approximation to it.

The approximation ratio measures the value of the optimal over 
the value of our algorithm (for maximisation problems) or the 
inverse of this ratio (for minimisation problems), taken worst-
case over all the possible inputs to the problem. 



Approximation in 
mechanism design



Approximation in 
mechanism design

Approximation algorithms for mechanism design problems: 



Approximation in 
mechanism design

Approximation algorithms for mechanism design problems: 

We are faced with an optimisation problem which we could 
solve optimally if the agents were being honest and not 
strategic. 



Approximation in 
mechanism design

Approximation algorithms for mechanism design problems: 

We are faced with an optimisation problem which we could 
solve optimally if the agents were being honest and not 
strategic. 

We design truthful mechanisms which do not achieve an 
optimal solution, but an approximation to it.



Approximation in 
mechanism design

Approximation algorithms for mechanism design problems: 

We are faced with an optimisation problem which we could 
solve optimally if the agents were being honest and not 
strategic. 

We design truthful mechanisms which do not achieve an 
optimal solution, but an approximation to it.

The approximation ratio measures the value of the optimal over 
the value of our algorithm (for maximisation problems) or the 
inverse of this ratio (for minimisation problems), taken worst-
case over all the possible inputs to the problem. 



Let’s become Computer 
Scientists again

General Question: Among all the truthful voting rules, which one is 
the best with respect to the global objective?



Let’s become Computer 
Scientists again

General Question: Among all the truthful voting rules, which one is 
the best with respect to the global objective?

Refined Question: Among all the truthful voting rules, or, in this 
context, mechanisms, what is the one with the smallest possible 
approximation ratio? 
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Truthful Facility Location 
(Procaccia and Tennenholtz 2010) 
There is a set  agents (voters), each of which has an ideal location (the 
“peak”)  on the real line . 

N = {1,…, n}
xi ℝ

We want to place a facility at some location . Any location  is a possible 
candidate.

y ∈ ℝ y ∈ ℝ

Given a location , the cost of agent  is defined as , i.e., the distance 
between its peak and the location .

y ∈ ℝ i |y − xi |
y

A mechanism asks the agents to report their peaks , and outputs a location 
.

xi
y = f(x1, …, xn)

Each agent aims to minimise its cost and reports its peak as  accordingly.̂xi

We want to design a truthful mechanism (voting rule) for the problem that has the 
minimum possible approximation ratio for the social cost objective, i.e., the sum of 
agents’ costs ∑

i∈N

|y − xi |



Example 2:  
Setting the temperature

The reports shown in the picture are the peaks, but any temperature 
is a possible outcome.


Scotland right now Greece in July
12 15 17 20 24 26 28
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Assume that we have a set of possible temperatures for the thermostat, 
e.g., .


Let’s say that your ideal temperature would be  degrees.
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Generally, the “farther away” we move from your ideal temperature, the less 
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Single-Peaked Preferences
Assume that we have a set of possible temperatures for the thermostat, 
e.g., .


Let’s say that your ideal temperature would be  degrees.


It is reasonable to assume that you would also prefer  degrees to  
degrees, and likewise,  degrees to  degrees.


Generally, the “farther away” we move from your ideal temperature, the less 
happy you become. 

{−10, − 5, 0, 5, 10, 15, 20, 25, 30, 35, 40}

20

25 30
15 10

0−5−10 5 10 15 20 25 30 35 40

How is the facility location setting different from this?
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Let’s use the median voter rule for the TFL problem. 


The mechanism is truthful for the same reason as before. 

Let’s consider any other location z ∈ ℝ

z

At most half of the agents pay an extra
At least half of the agents pay an extra

The social cost of the median is at most 

the social cost of any other location.

What is the approximation ratio 
of the median voter mechanism?
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x3
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The approximation ratio of the MVM is at least 2. 

The approximation ratio of the MVM is at most 2.

The approximation ratio of any -th order statistic is exactly 2.k

y* = (x7 − x1)/2

Any point in here is a 2 approximation.
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A mechanism asks the agents to report their peaks , and outputs a location 
.


Each agent aims to minimise its cost and reports its peak as  accordingly.


We want to design a truthful mechanism (voting rule) for the problem that has the 
minimum possible approximation ratio for the maximum cost objective, i.e., the 
maximum of agents’ costs 

N = {1,…, n}
xi ℝ

y ∈ ℝ y ∈ ℝ

y ∈ ℝ i |y − xi |
y

xi
y = f(x1, …, xn)

̂xi

max
i∈N

|y − xi |
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Assume by contradiction that there exists some truthful mechanism  
with approximation ratio . 

M
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 the facility needs to be placed in the interior of the interval, wlog, 
closer to the right endpoint.
⇒
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with approximation ratio . 
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Assume now that agent with peak  reports 


The facility cannot change position, let’s see why.

x5 x′ 5 = y

y* = (x7 − x1)/2 y
x′ 5

It could be the case that  is the true peak and  is the misreport.x′ 5 x5
In that case the misreport would bring the facility exactly on the true peak.
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Assume now that agent with peak  reports x5 x′ 5 = y

The facility cannot change position, let’s see why.

We can use the same argument for  and .x6 x7

What is the ratio on this instance?

y* = (x′ 7 − x1)/2 y
x′ 5
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Truthful Facility Location, 
max cost objective

Theorem (Procaccia and Tennenholtz 2010): The best possible 
approximation ratio achieved by any truthful mechanism for the 
maximum cost objective is 2. This is achieved by any -th ordered 
statistic mechanism. 

k


