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Bayesian Games and First-Price Auctions



First-price auctions (FPA)
Houses in Scotland are sold via sealed-bid 
first-price auctions.  

Each bidder submits their bid independently, 
without seeing the bids of the other bidders.


The winner is the bidder with the highest bid.


If there are multiple such bidders, one is 
chosen at random.


The winner needs to pay their bid, all other 
bidders do not pay anything. 



First-Price Auction
There are  bidders from a set .


There is one item for sale. 


Every bidder has a value  for the item - this is the bidder’s willingness to buy it. 


Each bidder chooses a bid  according to some function . 


Let  be the set of possible winners of the auction (those with the highest 
bid). 


The utility of bidder  is


  if .


, otherwise. 
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How should you bid in the FPA?
“I should bid lower than the amount I am 
willing to spend, to win the item on sale 
for a smaller price.” 

“I shouldn’t bid too low though, because 
that increases the chances of not winning 
the item at all.” 

“How low should I bid?” 

Before we attempt to answer this 
question, let’s ask another one first:


Could we design a different auction 
that does not require us to engage in 
such considerations?


i.e., can we define a truthful auction?



Auctions
Auction: A mechanism for buying or selling goods or 
services by means of eliciting bids from interested 
parties. 


Classic example: Auction of a painting, or art in 
general.


Most prominent example nowadays: Ad auctions


Selling advertising space (ad impressions) on 
online market places (ad exchanges).


In 2022, this accounted for 58% of Google’s 
revenue ($162.45 billion).



Auctions
Auction: A mechanism for buying or selling goods or 
services by means of eliciting bids from interested 
parties. 


Classic example: Auction of a painting, or art in 
general.


Most prominent example nowadays: Ad auctions


Selling advertising space (ad impressions) on 
online market places (ad exchanges).


In 2022, this accounted for 58% of Google’s 
revenue ($162.45 billion).

Actually, virtually all of these Ad exchanges use the first-price auction!



How should you bid in the FPA?

“I should bid lower than the amount 
I am willing to spend, to win the item 
on sale for a smaller price.” 

“I shouldn’t bid too low though, 
because that increases the chances 
of not winning the item at all.” 

“How low should I bid?” 

We will now attempt to answer this 
question.
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Bayesian games of incomplete information (Harsanyi 1967) model uncertainty about 
the values of the other players. 

A Bayesian game is a tuple  where(N, A, Θ, p, u)

 is the set of agents,N

 is the set of action profiles, where  is the set of available 
actions to player ,
A = A1 × … × An Ai

i

 is a set of type profiles, where  is the set of types of 
player ,
Θ = Θ1 × … × Θn Θi

i

 is a joint prior over types (from the perspective of  ), andpi : Θ → [0,1] i

 is the utility function for player , with .u = (u1, …, un) i u : A × Θ → ℝ
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Bayesian Games

A strategy  for player  is a function  which 
prescribes an action for every type. 

si i si : Θi → Ai

We will use  to denote the expected utility of agent  when her 
type is , its strategy is  and the strategies of the other players 
are . The expectation is over the common prior .

Ui i
θi si

s−i p

We write .Ui(si, s−i; θi)
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By picture
θi1 θi2 θi3 θi4 θi5 θi6

strategy si

Prior

p1 ⋅ ui (si(θi1), s−i(θ−i))
p2 ⋅ ui (si(θi1), s−i(θ′ −i))

+
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Solution Concept #6: 
Bayes-Nash Equilibrium

(Pure) Bayes-Nash Equilibrium: A (pure) strategy profile 
 such that every player maximises its expected utility.s = (s1, …, sn)

where the expectation is taken over the uncertainty about the type 
of the others.

One can also similarly define mixed Bayes-Nash equilibria. 
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Bayesian Games

A strategy  for player  is a function  which 
prescribes an action for every type. 


We will use  to denote the expected utility of agent  when her 
type is , its strategy is  and the strategies of the other players 
are . The expectation is over the common prior .


We write .

si i si : Θi → Ai

Ui i
θi si

s−i p

Ui(si, s−i; θi) A function  mapping values to bids.β
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Some simpler interesting cases
We model the beliefs of bidders for other bidders via probability distributions.

In particular, for each pair of bidders  and , there is a probability distribution 

 which captures the beliefs of bidder  for the values of bidder .

i j
Fij i j

Given a bidder , every bidder  has the same beliefs about , i.e., 

    (objective beliefs)

j i j
Fij = Fj ∀i

The values of all bidders come from the same distribution, i.e., 

    (symmetric beliefs)Fi = Fj ∀i, j
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The bidder’s optimisation problem
A bidder  would like to come up with a function  :  (a function which maps 
values to bids), which

i βi V → B

given the bidding functions  of the other bidders,β1, β2, …, βi−1, βi+1, …, βn

and given the beliefs  of the bidder for the values of any other bidder ,Fij j

maximises the expected utility of the bidder 

𝔼vj∼Fij, ∀j≠i [(vi − β(vi)) ⋅
1

W(β1(v1), …, βn(vn)) ]
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Solution Concept #3*: 
Mixed Nash Equilibrium

Introduced by Nash in 1951 (in his 
PhD dissertation). 


Advantage of MNE: Much more 
reasonable outcome - “I won’t 
change unless the others change”, 
hence a stable outcome.


Is it universal? Do MNE always 
exist?

Theorem (Nash 1951): Every (finite normal-form) game has at least 
one mixed Nash equilibrium.



Nash Equilibrium Existence
Does a mixed Bayes-Nash equilibrium always exist?



Nash Equilibrium Existence
Does a mixed Bayes-Nash equilibrium always exist?

If the bids are infinite and/or the distributions are continuous, then Nash’s 
theorem does not apply. 



Nash Equilibrium Existence
Does a mixed Bayes-Nash equilibrium always exist?

If the bids are infinite and/or the distributions are continuous, then Nash’s 
theorem does not apply. 

When the bids are finite and distributions are discrete, then we have a finite 
game. Nash’s theorem should apply…



Nash Equilibrium Existence
Does a mixed Bayes-Nash equilibrium always exist?

If the bids are infinite and/or the distributions are continuous, then Nash’s 
theorem does not apply. 

When the bids are finite and distributions are discrete, then we have a finite 
game. Nash’s theorem should apply…

… except this game is Bayesian, not a normal form game. 



Nash Equilibrium Existence
Does a mixed Bayes-Nash equilibrium always exist?

If the bids are infinite and/or the distributions are continuous, then Nash’s 
theorem does not apply. 

When the bids are finite and distributions are discrete, then we have a finite 
game. Nash’s theorem should apply…

… except this game is Bayesian, not a normal form game. 

Still, it can be proven that for a Bayesian game with finite type space and finite 
action space, a Bayes-Nash equilibrium always exists.



Nash Equilibrium Existence
Does a mixed Bayes-Nash equilibrium always exist?

If the bids are infinite and/or the distributions are continuous, then Nash’s 
theorem does not apply. 

When the bids are finite and distributions are discrete, then we have a finite 
game. Nash’s theorem should apply…

… except this game is Bayesian, not a normal form game. 

Still, it can be proven that for a Bayesian game with finite type space and finite 
action space, a Bayes-Nash equilibrium always exists.

Idea: Transform the Bayesian game into a full-information normal form game. 
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Nash Equilibrium Existence

Does a pure Nash equilibrium always exist?

Not necessarily, even when we have finite type and action 
spaces.
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How would one prove these statements?

If the distributions are discrete, then a Nash equilibrium might not exist 
(Maskin and Riley 1985).

To prove this, it suffices to construct an example of an auction (with 
appropriately chosen parameters - values, distributions, bids) such that 
an equilibrium does not exist. 

If the distributions are continuous, then a Nash equilibrium always exists 
(Vickrey 1961, Athey 2001).

This is more intricate. The known proofs go via fixed-point theorems and/
or topological lemmas. 

Athey’s proof using Kakutani, [F., Giannakopoulos, Hollender, Lazos, and 
Poças 2023] provide a proof that used Brouwer’s fixed point theorem. 
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A caveat of these existence proofs
This existence proofs ensure that an equilibrium exists.

So we can hope that the bidders are going to “find it” by 
iteratively adjusting their bids while maximising their 
utilities against the bids of the others.

But we would like to know more.

How do these equilibria look like? Can we describe them?
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Vickrey in 1961 did not only define the SPA…

… he also described the equilibria of the FPA …

… when all of the bidders values come from the uniform distribution.

0 1000
The uniform distribution
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PBNE in the FPA

Theorem (Vickrey 1961): Consider a first-price auction with  
bidders whose values are drawn independently from the uniform 
distribution on . Then the unique symmetric equilibrium is for 

each bidder to bid  .

n

[0,1]
n − 1

n
⋅ vi
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The expected utility of bidder 1 can be written as:

∫
2s1

0
(v1 − s1) dv2 + ∫

1

2s1

0 dv2

⏟As long as  
bidder 1 wins and has utility 

s1 > v2/2 ⇒ v2 < 2s1
v1 − s1

In the other case, bidder 1 loses and  
has utility zero. 
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Proof for n = 2

Assume that bidder 2 bids  .
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Proof for n = 2

Assume that bidder 2 bids  .


The expected utility of bidder 1 can be written as:


  


 

1
2

v2

U1(s1, s2; v1) = ∫
2s1

0
(v1 − s1) dv2 = (v1 − s1) ⋅ (2s1 − 0)

= 2v1 ⋅ s1 − s2
1

We would like to see where this is maximised.
i.e., where its derivative (for ) is 0.s1

Derivative: 2v1 − s1 = 0 ⇒ v1 = s1/2
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Revenue of the second price auction

For  bidders with uniform iid priors, the second-price auction 
achieves at least a -fraction of the optimal expected 
revenue (in equilibrium).

n
(n − 1)/n

COROLLARY (OF THE BULOW-KLEMPERER THEOREM)

Identical Bidders

For  bidders with uniform iid priors, the first-price auction achieves 
at least a -fraction of the optimal expected revenue in 
equilibrium.

n
(n − 1)/n

THEOREM
Is this a coincidence?
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Revenue Equivalence
Theorem (revenue equivalence, informal): Any auction 
mechanism that has the same outcome has the same 
expected revenue in equilibrium.  
Theorem (revenue equivalence, more formal): Suppose that the 
values of the bidders are drawn iid from a distribution. Then any 
symmetric and increasing equilibrium of any direct revelation 
(auction) mechanism such that 

1. the winner is the bidder with the highest bid, 

2. the expected payment of any bidder with value 0 is 0, 

has the same expected revenue. 
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For example

All-pay auction: The winner is the highest bidder but 
every bidder pays their bid.

You would expect that this auction could make more 
money, since losers also pay.

But theoretically, in equilibrium, it does not!
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Back to Vickrey
This existence proofs ensure that an equilibrium exists.

So we can hope that the bidders are going to “find it” by iteratively 
adjusting their bids while maximising their utilities against the bids of 
the others.

But we would like to know more.

How do these equilibria look like? Can we describe them?

What Vickrey provided is called a “closed form solution”. 
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Beyond Uniform Distributions
The literature has managed to produce (more complicated) closed form 
solutions for settings with symmetric beliefs.

For more general settings, we need to be more modest, as such closed 
form solutions may not exist.

An alternative is describing an equilibrium via e.g., a set of differential 
equations. 

These are however not easy to solve…

… and often we cannot even get those!
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Finding Equilibria in Auctions
Concrete CS problem: Given a FPA as an input, can we design 
an efficient algorithm for finding a Nash equilibrium of the 
auction?

This question is more intricate than it initially looks like. 

Vickrey, Myerson, Milgrom, Wilson, and all the other great 
economists were not thinking about computation.

Before we even attempt such an algorithm, we need to think 
about how to represent the inputs and outputs of our problem.
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Discrete FPA
In the discrete FPA, the representation is easy.

Representation of the input:

Each  is given as a number in binary.vi

Each  is given explicitly as pairs  (in binary) for every possible value   

(from the perspective of bidder ).

Fij (vi
jk, pi

jk) vi
jk

i

…
0 1000

1
100

1
5000

11
132

… ……

A discrete distribution
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Discrete FPA
In the discrete FPA, the representation is easy.

Representation of the output:

The output is the  function for each bidder .βi i
This is given explicitly as a vector 

.(βi(vi1), βi(vi2), …, βi(vin))
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Continuous FPA
In the continuous FPA, the representation requires more 
thought.

Representation of the input:

How do we represent the distributions ? These are now 
continuous functions. 

Fij

We will restrict attention to distributions for which there is a 
natural representation.
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Representable Distributions
Piece-wise constant densities:

0 1000
ℓk rk

hk

Piece-wise linear densities:

0 1000
ℓk rk

angle

Piece-wise polynomial densities:

For the -th subinterval , a list  
of (rational) coefficients of the polynomial. 

k [ℓk, rk]
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Continuous FPA
In the continuous FPA, the representation requires more thought.

Representation of the output:

Our functions  now have a continuous domain.βi

We cannot simply represent them as a finite map, because we 

have infinitely many values  for which we need to specify 

.

vi
βi(vi)
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Useful observations
Discrete bidding space: In all applications, the bids that a bidder 
can submit come from a finite set, e.g., multiples of one 1p. 

Increasing bidding function: A bidding function is increasing if  
higher values  higher bids⇒

formally, vij ≥ vik ⇒ βi(vij) ≥ βi(vik)

Fact (Athey 2001): The continuous FPA has Nash equilibria where 
all the bidding functions are increasing. 
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Continuous FPA
In the continuous FPA, the representation requires more thought.

Representation of the output:

Our functions  now have a continuous domain.βi

We cannot simply represent them as a finite map, because we have infinitely many 

values  for which we need to specify .vi βi(vi)

We can specify for each bid , the value  of the bidder for which 

.
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Continuous FPA
We can specify for each bid , the value  of the bidder for which .bj viℓ βi(viℓ) = bj

0 1000v1 v2 v3 v4

b1

b2
b3

b4

We call this a “jump point” representation.
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We are not done with the intricacies… 

What if in every Nash equilibrium, there 
is some number that is irrational?

Could this happen?

It could! 0 13
10

1

5
6
10

9
10

b1

b2
b3

b4

Intuitively, we can choose a  
“nearby” rational number

to get an approximate 

Nash equilibrium.
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design an efficient algorithm for finding a Nash equilibrium of 
the auction?

Now let’s make this question more precise. Recall:

If the distributions are discrete, then a Nash equilibrium 
might not exist (Maskin and Riley 1985).

Discrete FPA problem: Given a discrete FPA and an  
as input, decide if the auction has an -approximate 
Nash equilibrium or not. If it does, return in.

ε
ε

Theorem (F., Giannakopoulos, Hollender, and Kokkalis 2024): The Discrete FPA 
problem is NP-complete.
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Finding Equilibria in Auctions
Continuous FPA problem: Given a continuous FPA and an  as input, find an 

-approximate Nash equilibrium of the auction. 

ε
ε

Theorem (F., Giannakopoulos, Hollender, Lazos, and Poças 2023):  
The Discrete FPA problem is PPAD-complete.
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Any hope for efficient algorithms?
The aforementioned (NP- and PPAD-) hardness results are evidence that we 
cannot design efficient algorithms for finding Nash equilibria in the FPA in 
general. 

But we are actually far from fully understanding the complexity of the 
problem:

The hardness results require subjective beliefs .(Fij ≠ Fℓj)

For objective beliefs , we don’t know similar hardness results or 
polynomial-time algorithms. 

(Fij = Fℓj)

For symmetric beliefs , we have polynomial-time algorithms. 
(Filos-Ratsikas et al. 2021, Filos-Ratsikas et al. 2024)

(Fi = Fj)


