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Exercise 1. Consider the following game between Alice and Bob. First, Alice proposes to either go to the
cinema or for a walk in the park and then Bob decides whether to accept the proposition or to reject it. If
they agree to go to the cinema, each player gets a payoff of 2. If Alices proposes to go to the cinema and
Bob rejects, Alice gets a payoff of 0 and Bob gets a payoff of 1. If Alice proposes to go for a walk in the park
and Bob rejects, they each get a payoff of 1. Finally, if they agree to go for a walk in the park, Alice gets a
payoff of 3 and Bob gets a payoff of 0.

A. Formulate the above scenario as a two-player complete information game in extensive form, explicitly
presenting the game tree.

B. Convert the extensive form game to a game in normal form, explicitly writing down the utility matrix.

C. Find all the pure Nash equilibria of the game.

D. Explain how to use backwards induction to find a subgame perfect equilibrium of the game.

Solution 1. A. The game tree representing the game is the following:

A

B
B

C P

A RAR

(2,2) (0,1) (3,0) (1,1)

B. We first identify the strategy sets of the two players. For Alice, we have SA = {C,P}. For Bob, we
have SB = {AA,AR,RA,RR}. The corresponding normal form game is the following:

Alice/Bob AA AR RA RR
C (2,2) (2,2) (0,1) (0,1)
P (3,0) (1,1) (3,0) (1,1)

C. We observe that stategy RA for Bob is strictly dominated by strategy AR. Indeed, the utility of
RA against C and P is 1 and 0, respectively, whereas the utility of AR against C and P is 2 and 1
respectively. This means that we can eliminate the RA column from the matrix to obtain:
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Alice/Bob AA AR RR
C (2,2) (2,2) (0,1)
P (3,0) (1,1) (1,1)

By inspection, we can see that (C,AR) and (P,RR) are the only pure Nash equilibria of the game.

D. We have three subgames to consider. One of them is the whole game rooted at A, and the other
two are the two subgrames rooted at B (left) and B (right). These are the proper subgames of the
game. For the proper subgame on the left, where only Bob plays, playing A is the only PNE. For the
proper subgame on the right, playing R is the only PNE. Now given these, in the subgame rooted at
A (the original game), Alice’s best response is to choose C (as she knows that if she chooses P , Bob
will subsequently choose R. So the only subgame perfect equilibrium of this game (when expressed in
normal form) is (C,AR).

Exercise 2. Consider the 2-player extensive form game (of imperfect information) described by the game
tree below. At the leaves, the left payoff is for Player 1, and the right payoff is for Player 2. Describe all
subgame-perfect Nash equilibria in this game, in terms of behavioural strategies.

a b

ℓ1

a b

r1

L

x y

ℓ2

x y

r2

R

←− Player 2 −→

Player 1

Player 2

Player 1Player 1

(4, 9) (3, 13) (4, 11) (5, 7) (2, 4) (9, 6) (3, 11) (7, 5)

Solution 2. To compute a subgame perfect equilibrium, we need first to define our subgames. We have one
subgame which is the whole game rooted at the Player 1 node at the top, and two proper subgames rooted
at Player’s 2 choices on the left on the right, after Player 1 has chosen L and R respectively. Notice that
for a subtree to induce a subgame, it must contain all of the nodes that are in the same information set.
Therefore the subtrees rooted at ℓ1 and r1 for Player 1 are not subgames, because there are other nodes in
the same information set which are not part of the subtree.

To compute subgame perfect Nash equilibria (SPNE), we first compute the Nash equilibria of the left
proper subgame. To do that, we have transform this into an equivalent normal form game with the following
utility matrix:

Player 1/Player 2 ℓ1 r1
a (4,9) (4,11)
b (3,13) (5,7)

If we solve this game (e.g., using the “Educated Guess” technique), we find that the game has a unique
mixed Nash equilibrium (MNE), in which Player 1 plays (3/4, 1/4) for a utility of 4, and Player 2 plays
(1/2, 1/2) for a utility of 10.

We next consider the right proper subgame. Again, we can transform the subgame into an equivalent
normal form game with the following utility matrix:

Player 1/Player 2 ℓ2 r2
x (2,4) (3,13)
y (9,6) (7,5)
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The game has a unique pure Nash equilibrium, namely (y, ℓ2) which gives Player 1 a utility of 9 and Player
2 a utility of 6. The game does not have any other MNE.

Now, knowing that Player 1’s utility from the left subgame is 4 and its payoff from the right subgame is
9, at the root of the tree corresponding to the whole game, Player 1 is going to choose R with probability 1.

So, in the end, at the unique SPNE of the game, the behavioural strategy of Player 1 is to

- play R with probability 1 at the root, and L with probability 0,

- play a with probability 3/4 at the left subtree and b with probability 1/4, and

- play x with probability 0 at the right subtree and y with probability 1.

The behavioural strategy of Player 2 is to

- play ℓ1 with probability 1/2 at the left subtree, and r1 with probability 1/2, and

- play ℓ2 with probability 1 at the left subtree, and r2 with probability 0.

Exercise 3. Consider the following finite extensive form game of perfect information. There are two players.
Each player receives 1 British pound at the beginning of the game. The two players then alternate moves,
starting with player 1. In each move, the player whose turn it is to move either chooses stop or give. If
a player chooses give then the referee takes 1 pound from that player and gives 2 pounds to the other
player. If it chooses stop, then the game stops immediately, and both players keep the money they have
already accumulated. In any case, the game stops immediately if we reach a state where both players have
accumulated exactly 4 pounds.

A. Draw the finite game tree for this game, indicating the payoffs to the two players at the leaves.

B. Compute a subgame perfect Nash Equilibrium (SPNE) for this game.

C. Is there more than one SPNE? Explain.

D. Are there any other NEs? Explain.

E. How would you play this game if you were, say, player 1? Is there a plausible game-theoretic explanation
for how you would play it?

Solution 3.
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A. Going left in the tree indicates stopping, and going right indicates giving.

1

(1,1) 2

(0,3) 1

(2,2) 2

(1,4) 1

(3,3) 2

(2,5) (4,4)

B. Recall that a pure strategy for player i is a function that maps each node controlled by player i to
an action available at that node. In this way, the strategy tells Player i what to do at each node
controlled by it. (More generally, in the case of imperfect information games, a pure strategy for player
i is a function that maps each information set controlled by player i to an action available at that
information set.) In this game, each player controlled 3 nodes. We can hence describe a pure strategy
for each player as just a tuple, e.g., (G,G, S) is the strategy where the play “gives” in the first node it
controls, and “stops” in both of the other two nodes (lower down the tree) that it controls.

We can compute an SPNE for this game by using backwards induction algorithm discussed in class, in
the context of Kuhn’s theorem. In the lowest proper subgame, rooted at the last node controlled by
player 2, choosing “Stop” (S) yields a payoff of 5 to player 2, which is strictly higher than the payoff
of 4 that player 2 would obtain by choosing “Give” (G). This, in the (unique) pure SPNE of that
subgame, player 2 chooses action S, yielding payoff (2, 5) to the two players.

Knowing this, in the step before, player 1 gets strictly higher payoff of 3 by choosing S, than choosing
G and getting payoff 2 (in the SPNE of the subgame below). Hence, in the (unique) SPNE of the
subgame rooted at the lowest node for player 1, the action taken by player 1 is S. And so forth, we can
work our way back up the game tree, until we reach the root. Thus the SPNE is given in short hand
notation by ((S, S, S), (S, S, S)). In other words, both players choose action “Stop” at every node that
they control.

C. Working backwards in the above argument, we see that at each stage the choice S made by the player
is because it gets a strictly higher payoff by making that choice than by making the other choice G.
There is never the case where either player would get exactly the same payoff by choosing either S
or G (assuming the already computed SPNE for the lower subgame). This allows us to establish by
induction that each subgame, starting from the lower most subgame and working our way up toward
the root, has a unique SPNE. Therefore the entire game has a unique SPNE.

D. Consider any pure strategy pair ((S, ∗, ∗), (S, ∗, ∗)) for the two players, where each player’s first move
is S, but thereafter their move can be either G or S (it doesn’t matter). We claim that ANY such
combination of pure strategies for the two players is a Nash Equilbrium in this game.

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 4



Algorithmic Game Theory and its Applications University of Edinburgh

To see this, note that indeed, since player 1 starts with S, player 2 cannot possibly improve its own
payoff by unilaterally deviating from its own strategy, because against such a strategy for player 1
player 2 can’t even change its own payoff no matter what strategy it changes to.

On the other hand, since player 2 plays S at the first node it controls, we know that player 1 cannot
improve its own payoff by unilaterally changing its own pure strategy, because against such a pure
strategy for player 2, if player 1 chooses G instead of S at the root of the tree then its payoff will
decrease from 1 to 0. Moreover, if player 1 only changes its actions elsewhere lower in the tree, it will
have no effect on its own payoff (because its own first action makes the game stop immediately).

Thus any pair of strategies of the form ((S,*,*),(S,*,*)) is a pure NE for the game. Likewise, in terms
of mixed/behavior strategy NEs, note that any behavior strategy profile ((S,−,−), (S,−,−)) where
the first action chosen by both players is action S with probability 1, and where the subsequent choices
at the two lower nodes controlled by each player is ANY probability distribution on the two actions S
and G, forms a Nash Equilibrium.

E. This game is indeed very odd. In particular, it doesn’t feel that the SPNE or NEs of the game are a
good reflection of how humans might actually behave when playing this game.

Consider the same kind of game, but rather than having just 3 nodes belonging to each player, imagine
the game was extended to 100 rounds, so to 50 nodes for each player.

I think that if I was confronted with such a game in the “real world”, for the first rounds of play I
would “take a risk” and Give to the other player, to see if the other player is willing to return the favor
and “cooperate with me for a while” so we can both make some money.

It is much harder to argue why, at the very last step of the game, the player whose turn it is to move
would do anything other than pick the unique choice (Stop) which maximizes its own payoff. After all,
we assume a “rational” player always make choices that maximize its own (expected) payoff.

But that’s the troubling aspect: if the other player “knows” that Stop will be chosen at the very last
step, then it is also incentivized to choose “Stop” in the prior step, and so on. But this kind of backward
reasoning (which is very much related to “iterated illimination of strictly dominated strategies”), would
yield both players to choose Stop from the beginning of the game.

If a player could somehow “commit” to the other player that it will play G, for example by yelling out
“I promise that I will play (G,G,G)”, and if the other player was convinced by this, then the other
player’s best response to (G,G,G) would give both players a better payoff than just playing the SPNE.

However, there is no mechanism within such a 2-player non-cooperative game for “making firm com-
mitments” about how you will play in the future, since we assume the players choose their moves
independently, and we assume that each player is “rational”, meaning that its only objective is to
maximize its own (expected) payoff.

Exercise 4. Consider the following game between Alice and Bob. Out of a regular deck of 52 cards, one is
selected uniformly at random. Alice goes first and decides whether to play or quit. If she quits, the game
ends an no player gains or loses any money. If she decides to play, Bob guesses whether the selected card is
a King or not. If he guesses correctly, Alice pays him 1000 British pounds, otherwise no exchange of money
takes place.

A. State the game above as an imperfect information extensive form game by explicitly writing down the
game tree. Make sure to depict the information sets. Hint: Assume that the card is chosen by a third
player that is called nature and does not participate in the game, but is placed at the root of the tree.

B. Convert the game into a normal form game by explicitly writing down the payoff matrix.

C. Find all the mixed Nash equilibria of the game. Would you say that any of these equilibria are
counter-intuitive?
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Solution 4.

A. The game can me modelled as an imperfect information extensive form game with the following game
tree:

N

A

1/13 (K) 12/13 (¬K)

P

-1000

A

PQ Q

B

K ¬K

0

0

0

B

K ¬K

-1000

0

Notice that Alice is aware of whether she has drawn a King or not, but Bob does not have this
information. Therefore, the two nodes of Alice resulting from the two choices of nature are in the same
information set. Additionally, we do not need to add a node for every possible card, because the only
relevant information here is whether the card is a King or not.

B. The payoff matrix of the corresponding normal form game is the following:

Alice/Bob Guess K (K) Guess ¬K (¬K)
P with K (PK) −1000 · (1/13) 0
P with ¬K (P¬K) 0 −1000 · (12/13)
Q with K (QK) 0 0
Q with ¬K (Q¬K) 0 0

C. We first observe that QK and Q¬K are both pure Nash equilibria (PNE) of the game. Indeed, Alice
receives the maximum possible utility of 0, so she does not want to deviate. Bob also has disutility
0, which is the same as his disutility if he deviates to the other strategy. These equilibria seem quite
natural and expected.

Now let’s consider any mixed strategy (x1, x2, x3, x4) of Alice against the mixed strategy (y1, y2) of
Bob. Assuming that Bob’s strategy has both pure strategies in the support (i.e., y1, y2 > 0), we can
write the following system of linear equations to find Alice’s strategy:

−1000x1

13
=

−12000x2

13
x1 + x2 + x3 + x4 = 1.

From this, we have that x1 = 12x2. Note that the system is undertermined, so there are multiple
choices of x1 and x2 that satisfy the system of equations (depending on the value of x3 and x4). Let’s
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assume that x3 = x4 = 0, meaning that only strategies PK and P¬K are in the support of Alice’s
strategy. In that case, we obtain that x1 = 12/13 and x2 = 1/13.

We can also set up a similar system of equations for Bob’s strategy:

−1000y1
13

=
−12000y2

13
,

y1 + y2 = 1

and compute y1 = 12/13 and y2 = 1/13. Plugging in the equations for Alice and Bob, we get the value
(−1000 · 12)/132 ≈ −71, which is the value of the game. Notice that it cannot be the case that Alice
plays QK or Q¬K in any optimal strategy, because then the equations for Bob would be

−1000y1
13

=
−12000y2

13
= 0,

y1 + y2 = 1,

which is infeasble.

This latter MNE is counter-intuitive, because Alice is receiving a negative expected payoff, when,
obviously, by always quitting, she can receive a zero payoff. More intuitively, Alice can engage in a
game where she can only lose or quite - it seems that rationally it would make sense to quit! But still,
there is an equilibrium in which she still plays with some probability.

What makes this equilibrium counter-intuitive, in game-theoretic terms, is that in it, Alice’s strategy
is weakly dominated by any pure strategy in which she quits the game. There are certain cases for
which these weakly dominated equilibria might be ruled off as unnatural (an example is overbidding
equilibria in the second-price auction, which we will see later).

Exercise 5.

Consider the following extensive form game of imperfect information with chance nodes. Compute a SPNE
of the game. Are there any other NEs for this game?
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Solution 5. First of all, it is clear that Player 1 will always choose B whenever facing the choice at the
leftmost node. Thus, we can and will from now on assume that player 1 will always play B in that leftmost
subgame. Thus with 1/3 probability, the payoff to player 1 will be 3, and the payoff to player 2 will be 2. This
is in fact the only proper subgame of the game, as a subgame must consist of a subtree with self-contained
information sets, and say starting from player 2s information set doesn’t form a subtree (it is a forest). Now
let us consider the expected payoff overall, to both players. In effect, let us construct the normal form game
corresponding to this extensive form game, after the action B at the leftmost node for player 1 has been
fixed.

It is not difficult to calculate the expected payoffs to both players under the remaining combinations of
pure strategies (actions) for both players.

Specifically, we get the following payoff table:

a b
BC ((3 + 5 + 9)/3, (2 + 7 + 2)/3) ((3 + 5 + 5)/3, (2 + 7 + 2)/3)
BD ((3 + 10 + 6)/3, (2 + 3 + 6)/3) ((3 + 4 + 6)/3, (2 + 0 + 6)/3)

Or equivalently,

a b
BC (17/3, 11/3) (13/3, 11/3)
BD (19/3, 11/3) (13/3, 8/3)

To see the above, note that, for example, if Player 1 plays B and C and player 2 plays “a” then the
expected utility (payoff) for Player 1 is (3 + 5 + 9)/3 = 17/3. We can likewise calculate all of the entries of
the above table. (Note that in all these entries, it is always assumed that in the leftmost subtree player 1
plays B, because that is the unique optimal action in that subgame. So, without loss of generality, we can
assume player 1 has two possible pure strategies: BC and BD, and of course it can also mix (randomize)
between these two strategies.)

Now that we have the above normal form, we can easily calculate the Nash equilibria in this game, all
of which will be “subgame perfect”, because they already incorporate the fact that player 1 plays B in the
leftmost subgame.

Note, in particular, that ((BD), (a)) is a SPNE for the game, by inspection of the above payoff table:
neither player can improve its payoff by switching strategies. Likewise ((BC), (b)) is also an SPNE for the
game, since both players can not strictly improve their payoff by unilaterally switching their strategy.

It is also not diffcult to check that there are no other, mixed NEs in this 2× 2 normal form game. This
is because as soon as player 1 puts positive probability on BD, it is preferrable for player 2 to switch its
strategy to put probability 1 on pure strategy “a”. Likewise, as soon as player 2 puts any positive probability
on strategy “a”, it is preferable for player 1 to put probability 1 on pure strategy BD.

The above two (pure) Nash Equilibria are both subgame perfect. So, there are exactly two SPNEs, both
of which are pure.

Moreover, there are no other Nash Equilibria of any kind in the game. The reason is that, firstly, the
only proper “subgame” of this game is the one in the leftmost subtree, rooted at the node controlled by
player 1. But since there is a 1/3 probability that the game will end up in that subgame, player 1 MUST
play B with probability 1 in that subgame. Otherwise, if it puts positive probability on the action A, then
it can always increase its own expected payoff (no matter what the other player does), by playing action
B with probability 1 in that subgame. Hence, in all Nash equilibria (not just in all subgame perfect Nash
equilibria), player 1 plays the action B with probability 1 in the leftmost subgame. Hence, there are no other
NEs, other than the two pure NEs we have mentioned above.

Aris Filos-Ratsikas: Aris.Filos-Ratsikas@ed.ac.uk 8


