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Exercise 1. Consider the atomic network congestion game, with three players, described by the following
directed graph.

s tv2

v3

v1

0, 3, 6

3,6,7

7, 4, 8
4, 3, 5

4, 2, 6
9, 7, 9

1, 3, 4

In this game, every player i (for i = 1, 2, 3) needs to choose a directed path from the source s to the target t.
Thus, every player i’s set of possible actions (i.e., its set of pure strategies) is the set of all possible directed
paths from s to t.

Each edge e is labeled with a sequence of three numbers (c1, c2, c3). Given a profile π = (π1, π2, π3) of pure
strategies (i.e., s-t-paths) for all three players, the cost to player i of each directed edge, e, that is contained
in player i’s path πi, is ck, where k is the total number of players that have chosen edge e in their path. The
total cost to player i, in the given profile π, is the sum of the costs of all the edges in its path πi from s to
t. Each player of course wants to minimize its own total cost.

Compute a pure strategy Nash Equilibrium in this atomic network congestion game.

Exercise 2. Consider the class of linear network congestion games, i.e., network congestion games with linear
cost functions ce(x) = ar ·x+ br. For these games, the cost functions can be represented by providing ae and
be for each edge e ∈ E by its binary representation. The strategy sets can be represented implicitly, by using
the graph G as an input (e.g., represented as an adjacency list) and the origin-destination (source-target)
pair (oi, di) for each player i.

- Explain why the best response dynamics algorithm for finding a pure Nash equilibrium of such a game
is still a pseudopolynomial time, under this representation of the cost functions.

- Now that the strategies are implicitly represented rather than explicitly, can the best response of an
agent be computed in polynomial time? Justify your answer.

Exercise 3.

A. Consider any linear congestion game (i.e., a congestion game with linear cost functions), and any
strategy profile s ∈ S1 × . . .×Sn in this game. Let Φ(s) be the value of Rosenthal’s potential function
on input s, and let SC(s) be the social cost of s. Show that

1

2
C(s) ≤ Φ(s) ≤ C(s)
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Recall that Rosenthal’s potential function is defined as:

Φ(s) =
∑
r∈R

nr(s)∑
j=1

cr(j),

where nr(s) = #(r, s) is the number of players that use resource r under strategy profile s.

B. Consider a congestion game for which we have the following guarantee: The cost functions cr are such
that no resource is every used by more than λ players. Use the Potential Method (and Rosenthal’s
potential function) to show that the Price of Stability of any such game is at most λ.

Exercise 4. Consider the class of singleton congestion games, i.e., congestion games in which the strategies
of the players consist of single resources. Show that in singleton congestion games, a pure Nash equilibrium
can be computed in polynomial time.

Hint: Starting from a singleton congestion game G, construct an “equivalent” game G̃ with c̃max = poly(n,m),
and argue that the best response dynamics algorithm converges in G̃ in polynomial time.

Exercise 5 (Cut Games). Consider the following class of games, called cut games. We have an undirected
graph G = (V,E) in which each player i controls a vertex vi ∈ V . Each edge e ∈ E is associated with a
nonnegative weight we. A cut is a partition of the set of vertices into two disjoint sets LEFT and RIGHT.
Each player selects the set in which his contorolled vertex will be, i.e. the strategy space of each player i is
si = {LEFT, RIGHT} and let s = (s1, . . . , sn) be the corresponding strategy profile.

Let CUT(s) be the set of edges that have one endpoint in each set, and let Ni be the set of neighbours
of vi in the graph G. The utility of player i is defined as

ui(s) =
∑

e∈CUT(s)∩Ni

we.

A. Design a cut game in which the Price of Anarchy is 2.

Hint: Use a graph with four vertices and unit weights.

B. Prove that the Price of Anarchy of cut games is at most 2.

Hint: First argue that in a pure Nash equilibrium, the total weight of the neighbouring vertices of a
vertex vi in the cut is at least half the total weight of all the neighbouring vertices of the vertex.
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