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Exercise 1. Consider the atomic network congestion game, with three players, described by the following
directed graph.

s tv2

v3

v1

0, 3, 6
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4, 3, 5

4, 2, 6
9, 7, 9

1, 3, 4

In this game, every player i (for i = 1, 2, 3) needs to choose a directed path from the source s to the target t.
Thus, every player i’s set of possible actions (i.e., its set of pure strategies) is the set of all possible directed
paths from s to t.

Each edge e is labeled with a sequence of three numbers (c1, c2, c3). Given a profile π = (π1, π2, π3) of pure
strategies (i.e., s-t-paths) for all three players, the cost to player i of each directed edge, e, that is contained
in player i’s path πi, is ck, where k is the total number of players that have chosen edge e in their path. The
total cost to player i, in the given profile π, is the sum of the costs of all the edges in its path πi from s to
t. Each player of course wants to minimize its own total cost.

Compute a pure strategy Nash Equilibrium in this atomic network congestion game.

Solution 1. As we are working with a congestion game, we can find a pure Nash Equilibrium by starting at
any pure strategy profile, and iteratively improving it until we cannot improve any further. To get a concrete
starting point, let’s say all players take the route s → v3 → t. Then we can do iterative improvements for
example1 as follows:

A. Player 1 switches to s → v2 → v1 → t

B. Player 2 switches to s → v2 → v1 → t

C. Player 3 switches to s → v1 → t.

D. Player 2 switches to s → v1 → t

1At many stages in the process there is more than one option on who improves and how.
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At D. no further improvements can be made, so we reached the following PNE:

Player 1: s → v2 → v1 → t

Player 2: s → v1 → t

Player 3: s → v1 → t

Note that in the above sequence we were not done at stage C, even though every player had switched once.
Other starting points will take through other sequences of steps, and they might end up in a different PNE,
although it turns out that in this game all pure Nash equilibria send two players via the route s → v1 → t
and one via s → v2 → v1 → t, differing only in which player chooses the path s → v2 → v1 → t.

Note that there are “different” pure PNEs in this game for a trivial reason: we can arbitrarily rename the
players in any permutation. However, this is only a different pure PNE in a trivial sense, by renaming which
player plays which strategy. It turns out that in this game there is no other “fundamentally different” PNE,
meaning a PNE consisting of an entirely different set of 3 paths from s to t.

In general however, such an atomic network congestion came can have multiple genuinely different PNEs,
where the players have completely different costs in the different PNEs.

Exercise 2. Consider the class of linear network congestion games, i.e., network congestion games with linear
cost functions ce(x) = ae ·x+ be. For these games, the cost functions can be represented by providing ae and
be for each edge e ∈ E by its binary representation. The strategy sets can be represented implicitly, by using
the graph G as an input (e.g., represented as an adjacency list) and the origin-destination (source-target)
pair (oi, di) for each player i.

- Explain why the best response dynamics algorithm for finding a pure Nash equilibrium of such a game
is still a pseudopolynomial time, under this representation of the cost functions.

- Now that the strategies are implicitly represented rather than explicitly, can the best response of an
agent be computed in polynomial time? Justify your answer.

Solution 2. Before we discuss linear network congestion games, let us first discuss the representation of
the inputs in the general class of congestion games. The input consists of the number of player n and the
number of resources m. Since we need to specify strategies for each agent and costs for each resource, we
need to be able to iterate over n and m, so these will not be represented in binary. So an algorithm that
runs in time poly(n,m) is indeed polynomial. The strategy set of each agent is given explicitly in the input
as a set Si ⊆ 2m, i.e., it could be exponential in the number of resources m. Still, an algorithm that runs in
time poly(m,n,maxi |Si|) is polynomial.

Furthermore, the cost functions are part of the input, and these need to be represented as well. How do
we represent a function? If the function is general, i.e., it does not have any specific structure that allows
us to represent it more succinctly, we will have to represent it as a map (e.g., a two-dimensional array)
by explicitly stating for each possible input (i.e., each number ni ∈ 1, 2, . . . , n) the corresponding output,
i.e., a number cr, such that cr = cr(ni), where ci is represented in binary. If we look at one entry of the
map, the input is bounded by n, and the output is bounded by the binary representatio of cr, i.e., the
number of bits needed to represent cr. In terms of space, this is Θ(log cr). So, an algorithm that runs in
time poly(m,n,maxi |Si|, logmaxr cr) is polynomial in the size of the input, but an algorithm that runs in
time poly(m,n,maxi |Si|,maxr cr) is exponential (and in fact, pseudopolynomial, since cr are the numerical
parameters of the input).

- Now let’s look at linear congestion games. Now the cost functions have a more explicit representation:
for each resource (edge) e, we instead give ae and be in the input; crucially, these are again represented
in binary. Therefore, a polynomial time algorithm would need to run in time poly(m,n, logmaxe(ae ·
n + be)). The best-response dynamics algorithm however runs in time poly(m,n,maxe(ae · n + be))
and thus it is only pseudopolynomial. The following fact is easy to verify, by looking at the maximum
value of the potential function in Rosenthal’s potential.
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- The best response of an agent can still be computed in polynomial time. The potential issue here is
that we no longer have an input representation of the strategies that is exponential in the number
of resources m. In other words, we no longer provide all possible paths in the input, but only the
origin and the destination for each player. Note that this (origin, destination) pair in itself does not
specify a strategy, but the strategy can be recovered by this pair as well as a path from the origin to
the destination. To compute the best response, a player would need to be able to verify whether a
given strategy profile is an equilibrium, i.e., to find a (oi, di) pair that minimises her cost, fixing the
strategies (paths) of the other players. This boils down to a minimum-cost path computation on the
network, which can be done e.g., using the Bellman-Ford algorithm.

Exercise 3.

A. Consider any linear congestion game (i.e., a congestion game with linear cost functions), and any
strategy profile s ∈ S1 × . . .×Sn in this game. Let Φ(s) be the value of Rosenthal’s potential function
on input s, and let SC(s) be the social cost of s. Show that

1

2
SC(s) ≤ Φ(s) ≤ SC(s)

Recall that Rosenthal’s potential function is defined as:

Φ(s) =
∑
r∈R

nr(s)∑
j=1

cr(j),

where nr(s) = ns is the number of players that use resource r under strategy profile s.

B. Consider a congestion game for which we have the following guarantee: The cost functions cr are such
that no resource is every used by more than λ players. Use the Potential Method (and Rosenthal’s
potential function) to show that the Price of Stability of any such game is at most λ.

Solution 3.

A. Recall that the social cost and Rosenthal’s potential are defined, respectively, by

C(s) =
∑
r∈R

nrcr(nr) Φ(s) =
∑
r∈R

nr∑
j=1

cr(j),

where for simplicity we are denoting nr = nr(s) to be the set of players using resource r at strategy s.

For the right-hand side inequality first, since the cost functions of the resources are nondecreasing, we
have

Φ(s) =
∑
r∈R

nr∑
i=1

cr(i) ≤
∑
r∈R

nr∑
i=1

cr(nr) =
∑
e∈E

nrcr(nr) = C(s).

For the remaining inequality, observe that for any natural number n and for k = 0, 1, it holds that

1

k + 1
nk ≤ 1k + 2k + · · ·+ nk =

n∑
j=1

jk. (1)

Since each cost function can be expressed as a linear function cr(x) = ar · x+ br we can upper bound
the social cost by:
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C(s) =
∑
r∈R

nrcr(nr)

=
∑
r∈R

nr(arnr + br)

=
∑
r∈R

(ar · n2
r + br · nr)

≤
∑
r∈R

2ar

nr∑
j=1

j2 + br

nr∑
j=1

j

 , due to (1),

≤ 2
∑
r∈R

1∑
k=0

ar,k

nr∑
j=1

jk letting ar,1 = ar and ar,0 = br

= 2
∑
r∈R

nr∑
j=1

1∑
k=0

ar,k · jk

= 2
∑
r∈R

nr∑
j=1

cr(j)

= 2Φ(s).

B. Let s be a strategy profile and let SC(s) be the social cost of that strategy profile. It holds that

SC(s) =

n∑
i=1

costi(s) =

n∑
i=1

∑
r∈si

cr(ns) =
∑
r∈R

∑
i:r∈si

cr(ns) =
∑
r∈R

ns · cr(ns)

≤ λ
∑
r∈R

cr(ns) ≤ λ
∑
r∈R

n∑
i=1

cr(i) = λΦ(s).

where the first inequality follows from the fact that at most λ players are using resource r in any profile.
We also have that

Φ(s) =
∑
r∈R

ns∑
i=1

cr(i) ≤
∑
r∈R

ns∑
i=1

cr(ns) =
∑
r∈R

, nscr(ns) = SC(s)

Now we start from a profile s∗ with minimum social cost. If s∗ is a pure Nash equilibrium, then the
Price of Stability is 1 and we are done. Otherwise, we let the players deviate and best-respond until
the reach a pure Nash equilibrium s. Since in each step some player decreases her cost and Φ is a
potential function, we know that Φ(s) ≤ Φ(s∗) and we have

SC(s) ≤ λΦ(s) ≤ λΦ(s∗) ≤ λSC(s∗),

and the Price of Stability bound follows.

Exercise 4. Consider the class of singleton congestion games, i.e., congestion games in which the strategies
of the players consist of single resources. Show that in singleton congestion games, a pure Nash equilibrium
can be computed in polynomial time.

Hint: Starting from a singleton congestion game G, construct an “equivalent” game G̃ with c̃max = poly(n,m),
and argue that the best response dynamics algorithm converges in G̃ in polynomial time.
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Solution 4. Fix a singleton congestion game G = (N,E, {Si}, {ce}). Our goal is to construct an “equivalent”
game G̃ = (N,E, {Si}, {c̃e}) with c̃max = poly(n,m). Then, we can deploy the best-response dynamics
convergence theorem to get convergence in polynomially many steps, concluding our proof.

LetK = {ce(j) | e ∈ E, j ∈ [n]} be the set of all possible resource-cost values of G. Notice that |K| ≤ nm.
We define modified cost functions c̃e, for all resources e ∈ E, via

c̃e(j) = k ⇐⇒ |{κ ∈ K | κ < ce(j)}| = k − 1. (2)

In other words, c̃e(j) gives the position of the value ce(j) within K (when taken ordered from smallest to
largest). By this, we can immediately deduce that indeed c̃e(j) ≤ nm = poly(n,m) for all resources e.

The equivalence of G and G̃ can now be taken to mean that the two games preserve the better-response
incentives of the players. Formally, we need to show that for all outcomes s⃗, every player i and any deviation
s′i:

Ci(s
′
i, s−i) < Ci(s⃗) ⇐⇒ C̃i(s

′
i, s−i) < C̃i(s⃗).

Making use of the fact that our games are singleton, and denoting with e, e′ the (single) resource in strategies
si and s′i, respectively, this condition is equivalently written as

ce′(ne′ + 1) < ce(ne) ⇐⇒ c̃e′(ne′ + 1) < c̃e(ne), (3)

where for simplicity we are using the shortcut notation ne = ne(s⃗), ne′ = ne′(s⃗). Now it is not hard to
establish the validity of (3), directly by observing that the definition of the modified costs c̃e in (2) preserves
the relative order of the cost values.

Exercise 5 (Cut Games). Consider the following class of games, called cut games. We have an undirected
graph G = (V,E) in which each player i controls a vertex vi ∈ V . Each edge e ∈ E is associated with a
nonnegative weight we. A cut is a partition of the set of vertices into two disjoint sets LEFT and RIGHT.
Each player selects the set in which his contorolled vertex will be, i.e. the strategy space of each player i is
si = {LEFT, RIGHT} and let s = (s1, . . . , sn) be the corresponding strategy profile.

Let CUT(s) be the set of edges that have one endpoint in each set, and let Ni be the set of neighbours
of vi in the graph G. The utility of player i is defined as

ui(s) =
∑

e∈CUT(s)∩Ni

we.

A. Design a cut game in which the Price of Anarchy is 2.

Hint: Use a graph with four vertices and unit weights.

B. Prove that the Price of Anarchy of cut games is at most 2.

Hint: First argue that in a pure Nash equilibrium, the total weight of the neighbouring vertices of a
vertex vi in the cut is at least half the total weight of all the neighbouring vertices of the vertex.

Solution 5.

A. Consider a graph with 4 vertices a, b, c, d and edges (a, b), (c, d), (a, c) and (b, d) with unit weights,
i.e. for each edge e, it holds that we = 1. Consider the profile in which vertices a and b are on
LEFT and vertices c and d are on RIGHT . This is a pure Nash equilibrium. Consider some player,
for example player i that is associated with vertex a and observe that her payoff is 1, as only edge
(a, c) ∈ CUT (a) ∩ Ni.Assume that i decides to claim strategy RIGHT instead of LEFT ; her payoff
then would still be 1 as now only edge (a, b) ∈ CUT (a)∩Ni and the player has no incentive to deviate.
The arguments for all other cases are symmetric and similar. The total payoff of this pure Nash
equilibrium is 4 (each player has a payoff of 1). On the other hand, the profile in which a and d are
on LEFT and b and c are on RIGHT has a total payoff of 8, since all players have a payoff of 2. The
Price of Anarchy is 2.
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B. Let Seq be a pure Nash equilibrium in which some players (possibly none) choose LEFT and some
players choose RIGHT . Since we are at a pure Nash equilibrium, a player does not wish to deviate,
which means that the total weight of the edges that are adjacent to her associated vertex u that are
in the cut must be at least half of the total weight of the edges adjacent to u (as otherwise the player
would have an incentive to deviate to the other part of the partiion). Formally, this means that

ui(Seq) =
∑

e∈CUT (Seq)∩N1

we ≥
1

2

∑
e∈Ni

we

By summing up over all players we get that:

n∑
i=1

ui(Seq) ≥
1

2

n∑
i=1

∑
e∈Ni

we =
∑
e∈E

we,

where the last equality holds because when suming up over all the players, we count each edge (u, v)
twice, once for the player that is associated with vertex u and once for the player that is associated
with vertex v. The optimal total payoff can not be higher than twice the total weight of the edges and
therefore the Price of Anarchy guarantee of 2 follows.
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