Introduction to Algorithms and Data Structures

Tutorial 9

your tutor

University of Edinburgh

10th-14th March, 2025

IADS (2024/25) — Tutorial 9- slide 1

Q1: SAT <p 3-SAT

Q1(a) Show that SAT and 3-SAT are in NP

» “solution/certificate” for a SAT instance & = C; /... Cp, will be an
assignment to the logical variables {x,...,x,}

» Assignment can be written as binary string by ... b, of length n (so
polynomial in the size of the input formula ¢).

» To verify by ... b, against ¢, verify each C; in turn

» For each literal £ = x; in C;, check whether b; =17

For each literal £ =x; in C;, check whether b; = 07

As long as one of these tests passes, C; is satisfied by b; ... b,.
> It takes O(|Cjl) “lookups” to check C;.

» To check all G are satisfied takes O (ijzl ICJ-I) lookups in total, which is
polynomial-time, in the size of our input instance .

Hence SAT is in NP.
Same argument works for 3-SAT.

IADS (2024/25) — Tutorial 9- slide 2

Q1: SAT <p 3-SAT

Q1(b) Show that SAT <p 3-SAT.
Instance ® = C; /\.../\ C, of SAT, over boolean variables {xi, ..., x,}.

Assume that no C; includes any complementary pair of literals x;, x; (these would
be trivially satisfied - just delete the clause).

Will convert @ to an equivalent 3-SAT formula “clause by clause”.
Take into account the size of each (.
4 cases:

> |Gl=1
> |Gl =2
> |G| =3 ... just leave these exactly as they are!
> [Gl>4

IADS (2024/25) — Tutorial 9- slide 3

Q1: SAT <p 3-SAT

Q1(b) SAT <p 3-SAT cont'd.

|Cjl = 1: Suppose C; = ({; 1) for that specific literal {; ;. Create two dummy
variables y; 1, yj 2, then we will replace C; by the following four clauses:

Gi=W01VyiaVye) Go=1VyiVye)
Gs=W0a1Vy1Vy2) Ga=Ua1VyiVy2)

Claim: The “/\" of these 4 clauses is equivalent to C; = ({; 1).

Why? Note that no matter what values get assigned to y; 1, ¥, there will be
one pairing (from the options {yj1,¥j1} X {¥j2,¥;2}) that has both of the y; .
literals fail. So this clause will force {; 1 to be true, equivalent to C;.

IADS (2024/25) — Tutorial 9- slide 4

Q1: SAT <p 3-SAT

Q1(b) SAT <p 3-SAT cont'd.

|Cjl = 2: Suppose C; = ({;,1 V {j) for its two specific literals. Use one dummy
variable y; to replace C; by the following two clauses:

C.jvl = (ejvl \/ 2j>2 \/-y./)’ C_‘j,2 = (gj»I \/ ej»Z \/-)7./)'
For similar reasons to the |Cj| =1 case,

(ej,l \/ ej‘z \/}{,) /\ ((’,j‘l \/ €j‘2 \/ Z)

is true in exactly the same circs as the original C;.

IADS (2024/25) — Tutorial 9- slide 5

Q1: SAT <p 3-SAT

Q1(b) SAT <p 3-SAT cont'd.

|Cjl = 2: Suppose C; = ({;,1 V {j) for its two specific literals. Use one dummy
variable y; to replace C; by the following two clauses:

C.jvl = (ejvl \/ 2j>2 \/-y./)’ C_‘j,2 = (gj»I \/ ej»Z \/-)7./)'
For similar reasons to the |Cj| =1 case,

(ej,l \/ ej‘z \/}{,) /\ ((’,j‘l \/ €j‘2 \/ Z)

is true in exactly the same circs as the original C;.

IADS (2024/25) — Tutorial 9- slide 6

Q1: SAT <p 3-SAT

Q1(b) SAT <p 3-SAT cont'd.

|Gl > 3: We will add |G| —3 new dummy variables y;j o, ...y ;-2 (so 1 dummy
variable if |G;| was 4, two dummy variables if |C;| was 5, ...)

Suppose CJ = (Ej,l \/f_jyg V... \/f"|cj‘).

We then replace C; with the following clauses Cj 1, ..., Cj c—2 defined as
follows:
(b1 V&2 V yj2) i=1
G = Vi Vi Vyjie) i 1<i<|Gl—2

Viici—2 V-1 Vi) i=I1Gl—2

Claim: G1 A... A\ G g2 Is satisfiable < C; is satisfiable.

IADS (2024/25) — Tutorial 9- slide 7

Q1: SAT <p 3-SAT

Q1(b) SAT <p 3-SAT cont'd.

(tj,1 V2 Vo) =1
G,i = 5, V4 i1 V yjie) ih1<i<|[G[=2
Wiigi—2 V& ig-1 Vi) i=1G—2

Claim: Gi1 A... A\ G2 Is satisfiable & C; is satisfiable.

= direction: Suppose Cj1/\... /A G ¢ is satisfiable.

Let ix be the first such that y; ;. = 0. If ix = 2, then {;; \V {; » must be
true ... if 2 < ix < |G| — 2, then {;;, must be true ... if y;; =1 for all /,
then {; |c—1V {; ;) must be true.

4 direction: Choose any literal {; ;. of C; made true by the satisfying assignment.
Set y; ;i =1 for i < i* and y;; = 0 for i > i, this satisfies all G ;

Note: Need “fresh” dummy variables for each C; with |Gjl.

IADS (2024/25) — Tutorial 9- slide 8

Q1: SAT <p 3-SAT

Q1(b) SAT <p 3-SAT cont'd.

We argued “equivalence” on a clause-by-clause basis.
By using “fresh” dummy variables for each C;, this equivalence extends to the
entire logical formula (no interdependence except among the original variables).

We have created an instance of 3-SAT of total size at most 12 times our original
problem (if size is counted in “total number of literals™).

Each of the conversions to 3-CNF are methodological, and can be done in time
linear in the size of C;.

Hence SAT <p 3-SAT.

IADS (2024/25) — Tutorial 9— slide 9

Q3 (a): derandomization for 3-SAT

Want specific assignment to satisfy Y > %9, ie at least 8, of the clauses in the
following @.

o = (Xl\/XQ\/X:J,)/\()?1\/)?2\/)?3)/\()?1\/X2\/X3)/\
(Xl \/)?2\/)?3)A(X1 \/)?2\/X4)/\(X2\/X3\/)?4)/\
()?1\/)?3\/)?4)/\()?2\/)?3\/X4)/\()?1 V x3V xg).
variable x;: Two options: x; « 0 and x; « 1.

To compute Expg = E[Y | x; < 0], the expected number of satisfied clauses
conditional on x; being 0, we notice that ® has

» 4 clauses containing the negative literal x;
» 3 clauses containing the positive literal x;

» 2 clauses not involving this variable at all.

IADS (2024/25) — Tutorial 9- slide 10

Q3 (a): derandomization for 3-SAT

O = xaVV3)AXViVi3)AMXKVxVx)A
Vo V3) AV V)NV xVg) A
()?1\/)?3\/)?4) /\()?2\/)?3\/X4) /\()?1\/X3\/X4).
variable x;: Two options: x; «+ 0 and x; + 1.
If we set x; « 0, we satisfy all clauses with x;, we delete the x; literal from the

clauses containing it (probability drops to %) ... the two other clauses still have
probability %. This gives

ElY [x 0 =4+43-2+2-f =8

To compute Exp; = E[Y | x; « 1], the circs for positive literals (3) and negative
literals (4) are reversed, hence the value Exp; can be computed as

ElY [xa 1] =3+4-242-f = 7.75.

Verdict: x; «+ 0

IADS (2024/25) — Tutorial 9— slide 11

Q3 (a): derandomization for 3-SAT

D' = (¥ Vxs)A xaV oo Vs (Voo Vg A
(e 2 VBN (e 2V xa) A (x2 V x5V Xg)/\
(x1 V3V xg)/\ ()?2 V X3 V X4)/\ (x1V x3V x4)
4 clauses already satisfied. Only 5 “active” clauses remain.
Variable x:

xp ¢ 0: we have x; in 3 active clauses (satisfied by xo + 0), x2 in one length-2
clause (length-1 after xo < 0), one length-3 clause (becomes length 1). Hence

EIY [x1 0,20 = 4+3+1-3+1-2 = 825

(the 4 is from the previously satisfied clauses).
xy ¢ 1: For E[Y | x; ¢« 0,x ¢ 1], just observe

E[Y | X1 — 0] _ E[Y\Xﬂ—O,XQ{—O];E[Y|X1<—0,X2<—1] .

By E[Y | x1 « 0] = 8 and E[Y | xy « 0,x « 0] = 8.25, we know
E[Y | X1 — O,Xz — 1] < E[Y | X1 — O,Xg — 0]
Verdict: xp <+ 0

IADS (2024/25) — Tutorial 9- slide 12

Q3 (a): derandomization for 3-SAT

O = (M xa)A (V6 Vs A Ve Vo)A
(36 50 V)N (e o Voxa)\ x3 V Xg)A\
()21V>?3VX74]/\ [)(72\/)23VX4)/\ ()21VX3VX4)

7 clauses satisfied, just 2 active clauses.

Variable x3: Both remaining clauses have x3 as a positive literal. Hence:

ElY [x1 — 0, 0,x3 1] = 7+2 =29
E[Y |x1 ¢+ 0,x < 0,x30] = 7+0+1.% -75

Verdict: x3 + 1

Choose either value for x4, doesn’t matter which.
Overall assignment is x; + 0, x> + 0,x3 + 1, x4 € {0, 1}.

IADS (2024/25) — Tutorial 9- slide 13

Q3 (b): derandomization for general SAT

Suppose we want to do the same process for general CNF?
Obs 1: E[Y] = 8m no longer fits.

» Can use linearity of expectation for E[Y], but clauses have variable length

» Let my be the number of clauses of length k in @ (each k =1,...,n)

» Then E[Y] is
= ka(l—
k=1

Obs 2: Can do a derandomization to achieve at least E[Y] satisfied clauses.

» While calculating the E[Y | x; = b1,...,x; = bj] values, we will be working
with a @’ formula with clauses of varying sizes.

» Probability is (1 — 2%) for clauses with k > 3 active literals.
» Calculations are still feasible.

Won't necessarily satisfy > %m clauses, because E[Y] might have been smaller
(especially if @ has a lot of 1-literal and/or 2-literal clauses).

IADS (2024/25) — Tutorial 9- slide 14

Q4 (a): VERTEX COVER and INDEPENDENT SET

» Jis an Independent Set of G if for every u € J,v € I\ {u}, that (u,v) ¢ E.

» X is a Vertex Cover of G if for every e = (u,v) € E, either u € X or
velX.

IADS (2024/25) — Tutorial 9— slide 15

Q4 (a): VERTEX COVER and INDEPENDENT SET

» Jis an Independent Set of G if for every u € J,v € I\ {u}, that (u,v) ¢ E.

» X is a Vertex Cover of G if for every e = (u,v) € E, either u € X or
velX.

proof: By definition, the set J is an Independent set if (and only if) for every
u€dyveI\{u} that (u,v) € E.

IADS (2024/25) — Tutorial 9— slide 15

Q4 (a): VERTEX COVER and INDEPENDENT SET

» Jis an Independent Set of G if for every u € J,v € I\ {u}, that (u,v) € E.

» X is a Vertex Cover of G if for every e = (u,v) € E, either u € X or
velX.

proof: By definition, the set J is an Independent set if (and only if) for every
u€dyveI\{u} that (u,v) € E.

This is the case if and only if for every (u,v) € E, at least one of u, v is not in J.

IADS (2024/25) — Tutorial 9— slide 15

Q4 (a): VERTEX COVER and INDEPENDENT SET

» Jis an Independent Set of G if for every u € J,v € I\ {u}, that (u,v) € E.
» X is a Vertex Cover of G if for every e = (u,v) € E, either u € X or
velX.
proof: By definition, the set J is an Independent set if (and only if) for every
u€dyveI\{u} that (u,v) € E.
This is the case if and only if for every (u,v) € E, at least one of u, v is not in J.

This is the case if and only if if for every (u,v) € E, either u € V\Jorv € V\T.

IADS (2024/25) — Tutorial 9— slide 15

Q4 (a): VERTEX COVER and INDEPENDENT SET

» Jis an Independent Set of G if for every u € J,v € I\ {u}, that (u,v) € E.

» X is a Vertex Cover of G if for every e = (u,v) € E, either u € X or
velX.

proof: By definition, the set J is an Independent set if (and only if) for every
u€dyveI\{u} that (u,v) € E.

This is the case if and only if for every (u,v) € E, at least one of u, v is not in J.
This is the case if and only if if for every (u,v) € E, either u € V\Jorv € V\T.

This is the case (by definition) if and only if V' \ J is a Vertex Cover for G.

IADS (2024/25) — Tutorial 9— slide 15

Q4 (a): VERTEX COVER and INDEPENDENT SET

» Jis an Independent Set of G if for every u € J,v € I\ {u}, that (u,v) € E.

» X is a Vertex Cover of G if for every e = (u,v) € E, either u € X or
velX.

proof: By definition, the set J is an Independent set if (and only if) for every
u€dyveI\{u} that (u,v) € E.

This is the case if and only if for every (u,v) € E, at least one of u, v is not in J.
This is the case if and only if if for every (u,v) € E, either u € V\Jorv € V\T.

This is the case (by definition) if and only if V' \ J is a Vertex Cover for G.

IADS (2024/25) — Tutorial 9— slide 15

Q4 (a): VERTEX COVER and INDEPENDENT SET

Implications for the two decision problems:

G has an Independent Set J of size |1 > k
& G has a Vertex Cover V' \ J such that |J| > k
& G has a Vertex Cover X such that |X| < (n— k).

» Very straightforward “reduction” from INDEPENDENT SET to VERTEX
COVER, and vice versa.

» Really simple reduction, graph doesn't change, just flip between k and
n — k for size parameter.

Therefore, INDEPENDENT SET is NP-complete & VERTEX COVER is NP-
complete.

Rare to have “reductions” which work in both directions.

IADS (2024/25) — Tutorial 9- slide 16

Q4 (b): VERTEX COVER and INDEPENDENT SET

Implications for the approximation problems:

Hypothesis: We have an approximation algorithm for VERTEX COVER with
approximation ration of «, for o > 1.

So the algorithm will return £ satisfying £ < - OPTyc(G), where OPTyc(G) is
the optimum/minimum size of a VC for G.

What does n — £ mean in relation to the maximum Independent Set for G?
(remember maximum has size n — OPTyc(G)). We know that

n—8 > n—a-OPTyc(G) = (n—OPTyc(G)) — (x—1)OPTyc(G)
We would like n —{ > % (n— OPTyc(G)) for some B >1
But imagine o of the Vertex Cover is o« = 2. Then taking n — { for Independent
Set gives the bound
n—~{ > (n—OPTyc(G)) — OPTyc(G)

However, there may be graphs where OPT\¢(G) is n/2 or even greater.
So n— € may be arbitrarily close to 0.
Problem is the — in the conversion between the two problems: subtraction does

not preserve approximation.
IADS (2024/25) — Tutorial 9- slide 17

