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Q1: Sat ≤P 3-Sat

Q1(a) Show that Sat and 3-Sat are in NP

I “solution/certificate” for a Sat instance φ = C1 ∧ . . .Cm will be an
assignment to the logical variables {x1, . . . , xn}

I Assignment can be written as binary string b1 . . . bn of length n (so
polynomial in the size of the input formula φ).

I To verify b1 . . . bn against φ, verify each Cj in turn

I For each literal ` = xi in Cj , check whether bi = 1?
For each literal ` = x̄i in Cj , check whether bi = 0?
As long as one of these tests passes, Cj is satisfied by b1 . . . bn.

I It takes O(|Cj |) “lookups” to check Cj .

I To check all Cj are satisfied takes O
(∑m

j=1 |Cj |
)

lookups in total, which is

polynomial-time, in the size of our input instance φ.

Hence Sat is in NP.
Same argument works for 3-Sat.
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Q1: Sat ≤P 3-Sat

Q1(b) Show that Sat ≤P 3-Sat.

Instance Φ = C1 ∧ . . .∧ Cm of Sat, over boolean variables {x1, . . . , xn}.

Assume that no Cj includes any complementary pair of literals xi , x̄i (these would
be trivially satisfied - just delete the clause).

Will convert Φ to an equivalent 3-Sat formula “clause by clause”.
Take into account the size of each Cj .
4 cases:

I |Cj | = 1

I |Cj | = 2

I |Cj | = 3 . . . just leave these exactly as they are!

I |Cj | > 4
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Q1: Sat ≤P 3-Sat

Q1(b) Sat ≤P 3-Sat cont’d.

|Cj | = 1: Suppose Cj = (`j,1) for that specific literal `j,1. Create two dummy
variables yj,1, yj,2, then we will replace Cj by the following four clauses:

Cj,1 = (`j,1 ∨ yj,1 ∨ yj,2) Cj,2 = (`j,1 ∨ yj,1 ∨ yj,2)

Cj,3 = (`j,1 ∨ yj,1 ∨ yj,2) Cj,4 = (`j,1 ∨ yj,1 ∨ yj,2)

Claim: The “∧” of these 4 clauses is equivalent to Cj = (`j,1).

Why? Note that no matter what values get assigned to yj,1, yj,2, there will be
one pairing (from the options {yj,1, yj,1} × {yj,2, yj,2}) that has both of the yj,·
literals fail. So this clause will force `j,1 to be true, equivalent to Cj .
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Q1: Sat ≤P 3-Sat

Q1(b) Sat ≤P 3-Sat cont’d.

|Cj | = 2: Suppose Cj = (`j,1 ∨ `j,2) for its two specific literals. Use one dummy
variable yj to replace Cj by the following two clauses:

Cj,1 = (`j,1 ∨ `j,2 ∨ yj),Cj,2 = (`j,1 ∨ `j,2 ∨ ȳj).

For similar reasons to the |Cj | = 1 case,

(`j,1 ∨ `j,2 ∨ yj)∧ (`j,1 ∨ `j,2 ∨ ȳj)

is true in exactly the same circs as the original Cj .
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For similar reasons to the |Cj | = 1 case,

(`j,1 ∨ `j,2 ∨ yj)∧ (`j,1 ∨ `j,2 ∨ ȳj)
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Q1: Sat ≤P 3-Sat

Q1(b) Sat ≤P 3-Sat cont’d.

|Cj | > 3: We will add |Cj |− 3 new dummy variables yj,2, . . . yj,|Cj |−2 (so 1 dummy
variable if |Cj | was 4, two dummy variables if |Cj | was 5, . . .)

Suppose Cj = (`j,1 ∨ `j,2 ∨ . . .∨ `j,|Cj |).

We then replace Cj with the following clauses Cj,1, . . . ,Cj,|Cj |−2 defined as
follows:

Cj,i =


(`j,1 ∨ `j,2 ∨ yj,2) i = 1

(yj,i ∨ `j,i+1 ∨ yj,i+1) i , 1 < i < |Cj |− 2
(yj,|Cj |−2 ∨ `j,|Cj |−1 ∨ `j,|Cj |) i = |Cj |− 2

Claim: Cj,1 ∧ . . .∧ Cj,|Cj |−2 is satisfiable ⇔ Cj is satisfiable.
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Q1: Sat ≤P 3-Sat

Q1(b) Sat ≤P 3-Sat cont’d.

Cj,i =


(`j,1 ∨ `j,2 ∨ yj,2) i = 1

(yj,i ∨ `j,i+1 ∨ yj,i+1) i , 1 < i < |Cj |− 2
(yj,|Cj |−2 ∨ `j,|Cj |−1 ∨ `j,|Cj |) i = |Cj |− 2

Claim: Cj,1 ∧ . . .∧ Cj,|Cj |−2 is satisfiable ⇔ Cj is satisfiable.⇒ direction: Suppose Cj,1 ∧ . . .∧ Cj,|Cj |−2 is satisfiable.
Let i∗ be the first such that yj,i∗ = 0. If i∗ = 2, then `j,1 ∨ `j,2 must be
true . . . if 2 < i∗ ≤ |Cj | − 2, then `j,i∗ must be true . . . if yj,i = 1 for all i ,
then `j,|Cj |−1 ∨ `j,|Cj | must be true.⇐ direction: Choose any literal `j,i∗ of Cj made true by the satisfying assignment.
Set yj,i = 1 for i < i∗ and yj,i = 0 for i ≥ i∗, this satisfies all Cj,i

Note: Need “fresh” dummy variables for each Cj with |Cj |.
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Q1: Sat ≤P 3-Sat

Q1(b) Sat ≤P 3-Sat cont’d.

We argued “equivalence” on a clause-by-clause basis.
By using “fresh” dummy variables for each Cj , this equivalence extends to the
entire logical formula (no interdependence except among the original variables).

We have created an instance of 3-Sat of total size at most 12 times our original
problem (if size is counted in “total number of literals”).

Each of the conversions to 3-CNF are methodological, and can be done in time
linear in the size of Cj .

Hence Sat ≤P 3-Sat.
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Q3 (a): derandomization for 3-SAT

Want specific assignment to satisfy Y ≥ 7
89, ie at least 8, of the clauses in the

following Φ.

Φ = (x1 ∨ x2 ∨ x3)∧ (x̄1 ∨ x̄2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x3)∧

(x1 ∨ x̄2 ∨ x̄3)∧ (x1 ∨ x̄2 ∨ x4)∧ (x2 ∨ x3 ∨ x̄4)∧

(x̄1 ∨ x̄3 ∨ x̄4)∧ (x̄2 ∨ x̄3 ∨ x4)∧ (x̄1 ∨ x3 ∨ x4).

variable x1: Two options: x1 ← 0 and x1 ← 1.

To compute Exp0 = E[Y | x1 ← 0], the expected number of satisfied clauses
conditional on x1 being 0, we notice that Φ has

I 4 clauses containing the negative literal x̄1

I 3 clauses containing the positive literal x1

I 2 clauses not involving this variable at all.
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Q3 (a): derandomization for 3-SAT

Φ = (x1 ∨ x2 ∨ x3)∧ (x̄1 ∨ x̄2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x3)∧

(x1 ∨ x̄2 ∨ x̄3)∧ (x1 ∨ x̄2 ∨ x4)∧ (x2 ∨ x3 ∨ x̄4)∧

(x̄1 ∨ x̄3 ∨ x̄4)∧ (x̄2 ∨ x̄3 ∨ x4)∧ (x̄1 ∨ x3 ∨ x4).

variable x1: Two options: x1 ← 0 and x1 ← 1.
If we set x1 ← 0, we satisfy all clauses with x̄1, we delete the x1 literal from the
clauses containing it (probability drops to 3

4 ) . . . the two other clauses still have
probability 7

8 . This gives

E[Y | x1 ← 0] = 4 + 3 · 34 + 2 · 78 = 8.

To compute Exp1 = E[Y | x1 ← 1], the circs for positive literals (3) and negative
literals (4) are reversed, hence the value Exp1 can be computed as

E[Y | x1 ← 1] = 3 + 4 · 34 + 2 · 78 = 7.75.

Verdict: x1 ← 0
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Q3 (a): derandomization for 3-SAT

Φ ′ = (x1∨ x2 ∨ x3)∧ (x̄1 ∨ x̄2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x3)∧
(x1∨ x̄2 ∨ x̄3)∧ (x1∨ x̄2 ∨ x4)∧ (x2 ∨ x3 ∨ x̄4)∧
(x̄1 ∨ x̄3 ∨ x̄4)∧ (x̄2 ∨ x̄3 ∨ x4)∧ (x̄1 ∨ x3 ∨ x4)

4 clauses already satisfied. Only 5 “active” clauses remain.

Variable x2:
x2 ← 0: we have x̄2 in 3 active clauses (satisfied by x2 ← 0), x2 in one length-2
clause (length-1 after x2 ← 0), one length-3 clause (becomes length 1). Hence

E[Y | x1 ← 0, x2 ← 0] = 4+ 3 + 1 · 12 + 1 · 34 = 8.25

(the 4 is from the previously satisfied clauses).
x2 ← 1: For E[Y | x1 ← 0, x2 ← 1], just observe

E[Y | x1 ← 0] = E[Y |x1←0,x2←0]+E[Y |x1←0,x2←1]
2 .

By E[Y | x1 ← 0] = 8 and E[Y | x1 ← 0, x2 ← 0] = 8.25, we know
E[Y | x1 ← 0, x2 ← 1] < E[Y | x1 ← 0, x2 ← 0].
Verdict: x2 ← 0
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Q3 (a): derandomization for 3-SAT

Φ ′ = (x1 ∨ x2∨ x3)∧ (x̄1 ∨ x̄2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x3)∧
(x1∨ x̄2 ∨ x̄3)∧ (x1∨ x̄2 ∨ x4)∧(x2∨ x3 ∨ x̄4)∧
(x̄1 ∨ x̄3 ∨ x̄4)∧ (x̄2 ∨ x̄3 ∨ x4)∧ (x̄1 ∨ x3 ∨ x4)

7 clauses satisfied, just 2 active clauses.

Variable x3: Both remaining clauses have x3 as a positive literal. Hence:

E[Y | x1 ← 0, x2 ← 0, x3 ← 1] = 7+ 2 = 9

E[Y | x1 ← 0, x2 ← 0, x3 ← 0] = 7+ 0 + 1 · 12 = 7.5

Verdict: x3 ← 1

Choose either value for x4, doesn’t matter which.
Overall assignment is x1 ← 0, x2 ← 0, x3 ← 1, x4 ∈ {0, 1}.

IADS (2024/25) – Tutorial 9– slide 13



Q3 (b): derandomization for general SAT

Suppose we want to do the same process for general CNF?

Obs 1: E[Y ] = 7
8m no longer fits.

I Can use linearity of expectation for E[Y ], but clauses have variable length

I Let mk be the number of clauses of length k in Φ (each k = 1, . . . , n)
I Then E[Y ] is

E[Y ] =

n∑
k=1

mk(1 − 1
2k
)

Obs 2: Can do a derandomization to achieve at least E[Y ] satisfied clauses.

I While calculating the E[Y | x1 = b1, . . . , xj = bj ] values, we will be working
with a Φ ′ formula with clauses of varying sizes.

I Probability is (1 − 1
2k
) for clauses with k > 3 active literals.

I Calculations are still feasible.

Won’t necessarily satisfy ≥ 7
8m clauses, because E[Y ] might have been smaller

(especially if Φ has a lot of 1-literal and/or 2-literal clauses).
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Q4 (a): Vertex Cover and Independent Set

I I is an Independent Set of G if for every u ∈ I, v ∈ I \ {u}, that (u, v) /∈ E .

I K is a Vertex Cover of G if for every e = (u, v) ∈ E , either u ∈ K or
v ∈ K.

proof: By definition, the set I is an Independent set if (and only if) for every
u ∈ I, v ∈ I \ {u}, that (u, v) /∈ E .

This is the case if and only if for every (u, v) ∈ E , at least one of u, v is not in I.

This is the case if and only if if for every (u, v) ∈ E , either u ∈ V \I or v ∈ V \I.

This is the case (by definition) if and only if V \ I is a Vertex Cover for G .
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Q4 (a): Vertex Cover and Independent Set

Implications for the two decision problems:

G has an Independent Set I of size |I| ≥ k⇔ G has a Vertex Cover V \ I such that |I| ≥ k⇔ G has a Vertex Cover K such that |K| ≤ (n − k).

I Very straightforward “reduction” from Independent Set to Vertex
Cover, and vice versa.

I Really simple reduction, graph doesn’t change, just flip between k and
n − k for size parameter.

Therefore, Independent Set is NP-complete ⇔ Vertex Cover is NP-
complete.

Rare to have “reductions” which work in both directions.
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Q4 (b): Vertex Cover and Independent Set

Implications for the approximation problems:

Hypothesis: We have an approximation algorithm for Vertex Cover with
approximation ration of α, for α > 1.
So the algorithm will return ` satisfying ` ≤ α ·OPTVC (G ), where OPTVC (G ) is
the optimum/minimum size of a VC for G .

What does n − ` mean in relation to the maximum Independent Set for G?
(remember maximum has size n − OPTVC (G )). We know that

n − ` ≥ n − α · OPTVC (G ) = (n − OPTVC (G )) − (α− 1)OPTVC (G )

We would like n − ` ≥ 1
β
(n − OPTVC (G )) for some β > 1

But imagine α of the Vertex Cover is α = 2. Then taking n − ` for Independent
Set gives the bound

n − ` ≥ (n − OPTVC (G )) − OPTVC (G )

However, there may be graphs where OPTVC (G ) is n/2 or even greater.
So n − ` may be arbitrarily close to 0.
Problem is the − in the conversion between the two problems: subtraction does
not preserve approximation.
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