Introduction to Algorithms and Data Structures Tutorial 9

your tutor

University of Edinburgh

10th-14th March, 2025

Q1(a) Show that SAT and 3-SAT are in NP

- Solution/certificate" for a SAT instance φ = C₁ ∧...C_m will be an assignment to the logical variables {x₁,...,x_n}
- Assignment can be written as binary string b₁...b_n of length n (so polynomial in the size of the input formula φ).

• To verify $b_1 \dots b_n$ against ϕ , verify each C_j in turn

- For each literal l = xi in Cj, check whether bi = 1?
 For each literal l = xi in Cj, check whether bi = 0?
 As long as one of these tests passes, Cj is satisfied by b1...bn.
 It takes O(|Ci|) "lookups" to check Ci.
- ► To check all C_j are satisfied takes $O\left(\sum_{j=1}^m |C_j|\right)$ lookups in total, which is polynomial-time, in the size of our input instance ϕ .

Hence ${\rm SAT}$ is in NP. Same argument works for $3\mathchar`-{\rm SAT}.$

Q1(b) Show that SAT $\leq_P 3$ -SAT.

Instance $\Phi = C_1 \land \ldots \land C_m$ of SAT, over boolean variables $\{x_1, \ldots, x_n\}$.

Assume that no C_j includes any *complementary pair* of literals x_i , \bar{x}_i (these would be trivially satisfied - just delete the clause).

Will convert Φ to an equivalent 3-SAT formula "clause by clause". Take into account the size of each C_j . 4 cases:

►
$$|C_j| = 1$$

$$|C_j| = 2$$

• $|C_j| = 3 \dots$ just leave these exactly as they are!

Q1(b) SAT \leq_P 3-SAT cont'd.

 $|C_j| = 1$: Suppose $C_j = (\ell_{j,1})$ for that specific literal $\ell_{j,1}$. Create *two* dummy variables $y_{j,1}, y_{j,2}$, then we will replace C_j by the following four clauses:

$$C_{j,1} = (\ell_{j,1} \lor y_{j,1} \lor y_{j,2}) \qquad C_{j,2} = (\ell_{j,1} \lor \overline{y_{j,1}} \lor y_{j,2}) \\ C_{j,3} = (\ell_{j,1} \lor y_{j,1} \lor \overline{y_{j,2}}) \qquad C_{j,4} = (\ell_{j,1} \lor \overline{y_{j,1}} \lor \overline{y_{j,2}})$$

Claim: The " \land " of these 4 clauses is equivalent to $C_j = (\ell_{j,1})$.

Why? Note that *no matter what* values get assigned to $y_{j,1}, y_{j,2}$, there will be one pairing (from the options $\{y_{j,1}, \overline{y_{j,1}}\} \times \{y_{j,2}, \overline{y_{j,2}}\}$) that has *both of* the $y_{j,.}$ literals fail. So this clause will force $\ell_{j,1}$ to be true, equivalent to C_j .

Q1(b) SAT \leq_P 3-SAT cont'd.

 $|C_j| = 2$: Suppose $C_j = (\ell_{j,1} \vee \ell_{j,2})$ for its two specific literals. Use *one* dummy variable y_i to replace C_j by the following two clauses:

$$C_{j,1} = (\ell_{j,1} \vee \ell_{j,2} \vee y_j), C_{j,2} = (\ell_{j,1} \vee \ell_{j,2} \vee \overline{y_j}).$$

For similar reasons to the $|C_j| = 1$ case,

$$(\ell_{j,1} \vee \ell_{j,2} \vee y_j) \wedge (\ell_{j,1} \vee \ell_{j,2} \vee \overline{y_j})$$

is true in exactly the same circs as the original C_i .

Q1(b) SAT \leq_P 3-SAT cont'd.

 $|C_j| = 2$: Suppose $C_j = (\ell_{j,1} \vee \ell_{j,2})$ for its two specific literals. Use *one* dummy variable y_i to replace C_j by the following two clauses:

$$C_{j,1} = (\ell_{j,1} \vee \ell_{j,2} \vee y_j), C_{j,2} = (\ell_{j,1} \vee \ell_{j,2} \vee \overline{y_j}).$$

For similar reasons to the $|C_j| = 1$ case,

$$(\ell_{j,1} \vee \ell_{j,2} \vee y_j) \wedge (\ell_{j,1} \vee \ell_{j,2} \vee \overline{y_j})$$

is true in exactly the same circs as the original C_i .

Q1(b) SAT \leq_P 3-SAT cont'd.

 $|C_j| > 3$: We will add $|C_j| - 3$ new dummy variables $y_{j,2}, \dots y_{j,|C_j|-2}$ (so 1 dummy variable if $|C_j|$ was 4, two dummy variables if $|C_j|$ was 5, ...)

Suppose $C_j = (\ell_{j,1} \vee \ell_{j,2} \vee \ldots \vee \ell_{j,|C_j|}).$

We then replace C_j with the following clauses $C_{j,1}, \ldots, C_{j,|C_j|-2}$ defined as follows:

$$C_{j,i} = \begin{cases} (\ell_{j,1} \lor \ell_{j,2} \lor y_{j,2}) & i = 1\\ (\overline{y_{j,i}} \lor \ell_{j,i+1} \lor y_{j,i+1}) & i, 1 < i < |C_j| - 2\\ (\overline{y_{j,|C_j|-2}} \lor \ell_{j,|C_j|-1} \lor \ell_{j,|C_j|}) & i = |C_j| - 2 \end{cases}$$

Claim: $C_{j,1} \wedge \ldots \wedge C_{j,|C_i|-2}$ is satisfiable $\Leftrightarrow C_j$ is satisfiable.

Q1(b) SAT \leq_P 3-SAT cont'd.

$$C_{j,i} = \begin{cases} (\ell_{j,1} \lor \ell_{j,2} \lor y_{j,2}) & i = 1\\ (\overline{y_{j,i}} \lor \ell_{j,i+1} \lor y_{j,i+1}) & i, 1 < i < |C_j| - 2\\ (\overline{y_{j,|C_j|-2}} \lor \ell_{j,|C_j|-1} \lor \ell_{j,|C_j|}) & i = |C_j| - 2 \end{cases}$$

Claim: $C_{j,1} \wedge \ldots \wedge C_{j,|C_j|-2}$ is satisfiable $\Leftrightarrow C_j$ is satisfiable.

⇒ direction: Suppose $C_{j,1} \land \ldots \land C_{j,|C_j|-2}$ is satisfiable. Let *i** be the first such that $y_{j,i*} = 0$. If *i** = 2, then $\ell_{j,1} \lor \ell_{j,2}$ must be true ... if $2 < i* \le |C_j| - 2$, then $\ell_{j,i*}$ must be true ... if $y_{j,i} = 1$ for all *i*, then $\ell_{j,|C_i|-1} \lor \ell_{j,|C_i|}$ must be true.

 \Leftarrow direction: Choose any literal $\ell_{j,i*}$ of C_j made true by the satisfying assignment. Set $y_{j,i} = 1$ for i < i* and $y_{j,i} = 0$ for $i \ge i*$, this satisfies all $C_{j,i}$

Note: Need "fresh" dummy variables for each C_i with $|C_i|$.

Q1(b) SAT \leq_P 3-SAT cont'd.

We argued "equivalence" on a clause-by-clause basis.

By using "fresh" dummy variables for each C_j , this equivalence extends to the entire logical formula (no interdependence except among the original variables).

We have created an instance of 3-SAT of total size at most 12 times our original problem (if size is counted in "total number of literals").

Each of the conversions to 3-CNF are methodological, and can be done in time linear in the size of C_j .

Hence SAT $\leq_P 3$ -SAT.

Want specific assignment to satisfy $Y \ge \frac{7}{8}9$, ie at least 8, of the clauses in the following Φ .

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (\bar{x_1} \lor \bar{x_2} \lor \bar{x_3}) \land (\bar{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor \bar{x_3}) \land (x_1 \lor \bar{x_2} \lor x_4) \land (x_2 \lor x_3 \lor \bar{x_4}) \land (\bar{x_1} \lor \bar{x_3} \lor \bar{x_4}) \land (\bar{x_2} \lor \bar{x_3} \lor x_4) \land (\bar{x_1} \lor x_3 \lor x_4).$$

variable x_1 : Two options: $x_1 \leftarrow 0$ and $x_1 \leftarrow 1$.

To compute $Exp_0 = E[Y | x_1 \leftarrow 0]$, the expected number of satisfied clauses *conditional on* x_1 *being 0*, we notice that Φ has

- 4 clauses containing the negative literal $\bar{x_1}$
- 3 clauses containing the positive literal x₁
- 2 clauses not involving this variable at all.

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (\bar{x_1} \lor \bar{x_2} \lor \bar{x_3}) \land (\bar{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor \bar{x_3}) \land (x_1 \lor \bar{x_2} \lor x_4) \land (x_2 \lor x_3 \lor \bar{x_4}) \land (\bar{x_1} \lor \bar{x_3} \lor \bar{x_4}) \land (\bar{x_2} \lor \bar{x_3} \lor \bar{x_4}) \land (\bar{x_1} \lor \bar{x_3} \lor \bar{x_4}) \land (\bar{x_1} \lor x_3 \lor x_4).$$

variable x_1 : Two options: $x_1 \leftarrow 0$ and $x_1 \leftarrow 1$.

If we set $x_1 \leftarrow 0$, we satisfy all clauses with $\bar{x_1}$, we delete the x_1 literal from the clauses containing it (probability drops to $\frac{3}{4}$)... the two other clauses still have probability $\frac{7}{8}$. This gives

$$\mathsf{E}[Y \mid x_1 \leftarrow 0] = 4 + 3 \cdot \frac{3}{4} + 2 \cdot \frac{7}{8} = 8.$$

To compute $Exp_1 = E[Y | x_1 \leftarrow 1]$, the circs for positive literals (3) and negative literals (4) are reversed, hence the value Exp_1 can be computed as

$$\mathsf{E}[Y \mid x_1 \leftarrow 1] = 3 + 4 \cdot \frac{3}{4} + 2 \cdot \frac{7}{8} = 7.75.$$

Verdict: $x_1 \leftarrow 0$

$$\Phi' = (\underset{\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3}}{(\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3})} \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_4}) \land (\mathbf{x_2} \lor \mathbf{x_3} \lor \mathbf{x_4}) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4}) \land (\overline{x_2} \lor \overline{x_3} \lor \mathbf{x_4}) \land (\overline{x_1} \lor x_3 \lor \mathbf{x_4})$$

4 clauses already satisfied. Only 5 "active" clauses remain.

Variable x₂:

 $x_2 \leftarrow 0$: we have $\bar{x_2}$ in 3 active clauses (satisfied by $x_2 \leftarrow 0$), x_2 in one length-2 clause (length-1 after $x_2 \leftarrow 0$), one length-3 clause (becomes length 1). Hence

$$\mathsf{E}[Y \mid x_1 \leftarrow 0, x_2 \leftarrow 0] = 4 + 3 + 1 \cdot \frac{1}{2} + 1 \cdot \frac{3}{4} = 8.25$$

(the 4 is from the previously satisfied clauses). $x_2 \leftarrow 1$: For E[Y | $x_1 \leftarrow 0, x_2 \leftarrow 1$], just observe

$$\mathsf{E}[Y \mid x_1 \leftarrow 0] = \frac{\mathsf{E}[Y \mid x_1 \leftarrow 0, x_2 \leftarrow 0] + \mathsf{E}[Y \mid x_1 \leftarrow 0, x_2 \leftarrow 1]}{2}.$$

By $E[Y \mid x_1 \leftarrow 0] = 8$ and $E[Y \mid x_1 \leftarrow 0, x_2 \leftarrow 0] = 8.25$, we know $E[Y \mid x_1 \leftarrow 0, x_2 \leftarrow 1] < E[Y \mid x_1 \leftarrow 0, x_2 \leftarrow 0]$. Verdict: $x_2 \leftarrow 0$

$$\Phi' = (\underbrace{\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3}}_{(x_1 \lor \bar{x_2} \lor \bar{x_3}) \land (\bar{x_1} \lor x_2 \lor x_3) \land}_{(x_1 \lor \bar{x_2} \lor \bar{x_3}) \land (x_1 \lor \bar{x_2} \lor x_4) \land (\mathbf{x_2} \lor \mathbf{x_3} \lor \bar{x_4}) \land}_{(\bar{x_1} \lor \bar{x_3} \lor \bar{x_4}) \land (\bar{x_2} \lor \bar{x_3} \lor x_4) \land (\bar{x_1} \lor x_3 \lor x_4)}$$

7 clauses satisfied, just 2 active clauses.

Variable x_3 : Both remaining clauses have x_3 as a positive literal. Hence:

$$\begin{split} \mathsf{E}[Y \mid x_1 \leftarrow 0, x_2 \leftarrow 0, x_3 \leftarrow 1] &= \mathbf{7} + 2 = \mathbf{9} \\ \mathsf{E}[Y \mid x_1 \leftarrow 0, x_2 \leftarrow 0, x_3 \leftarrow 0] &= \mathbf{7} + \mathbf{0} + \mathbf{1} \cdot \frac{1}{2} = \mathbf{7.5} \end{split}$$

Verdict: $x_3 \leftarrow 1$

Choose either value for x_4 , doesn't matter which. Overall assignment is $x_1 \leftarrow 0, x_2 \leftarrow 0, x_3 \leftarrow 1, x_4 \in \{0, 1\}$.

Q3 (b): derandomization for general SAT

Suppose we want to do the same process for general CNF?

Obs 1: $E[Y] = \frac{7}{8}m$ no longer fits.

- ► Can use *linearity of expectation* for E[Y], but clauses have variable length
 - Let m_k be the number of clauses of length k in Φ (each k = 1,..., n)
 Then E[Y] is

$$E[Y] = \sum_{k=1}^{n} m_k (1 - \frac{1}{2^k})$$

Obs 2: Can do a derandomization to achieve at least E[Y] satisfied clauses.

- While calculating the E[Y | x₁ = b₁,..., x_j = b_j] values, we will be working with a Φ' formula with clauses of varying sizes.
- Probability is $(1 \frac{1}{2^k})$ for clauses with k > 3 active literals.
- Calculations are still feasible.

Won't necessarily satisfy $\geq \frac{7}{8}m$ clauses, because E[Y] might have been smaller (especially if Φ has a lot of 1-literal and/or 2-literal clauses).

- ▶ \mathfrak{I} is an *Independent Set* of *G* if for every $u \in \mathfrak{I}, v \in \mathfrak{I} \setminus \{u\}$, that $(u, v) \notin E$.
- K is a Vertex Cover of G if for every e = (u, v) ∈ E, either u ∈ K or v ∈ K.

- ▶ J is an *Independent Set* of G if for every $u \in J, v \in J \setminus \{u\}$, that $(u, v) \notin E$.
- ▶ \mathcal{K} is a *Vertex Cover* of *G* if for every $e = (u, v) \in E$, either $u \in \mathcal{K}$ or $v \in \mathcal{K}$.

proof: By definition, the set \mathcal{I} is an Independent set if (and only if) for every $u \in \mathcal{I}, v \in \mathcal{I} \setminus \{u\}$, that $(u, v) \notin E$.

- ▶ \mathfrak{I} is an *Independent Set* of *G* if for every $u \in \mathfrak{I}, v \in \mathfrak{I} \setminus \{u\}$, that $(u, v) \notin E$.
- ▶ \mathcal{K} is a *Vertex Cover* of *G* if for every $e = (u, v) \in E$, either $u \in \mathcal{K}$ or $v \in \mathcal{K}$.

proof: By definition, the set \mathcal{I} is an Independent set if (and only if) for every $u \in \mathcal{I}, v \in \mathcal{I} \setminus \{u\}$, that $(u, v) \notin E$.

This is the case if and only if for every $(u, v) \in E$, at least one of u, v is *not* in \mathfrak{I} .

- ▶ \mathfrak{I} is an *Independent Set* of *G* if for every $u \in \mathfrak{I}, v \in \mathfrak{I} \setminus \{u\}$, that $(u, v) \notin E$.
- ▶ \mathcal{K} is a *Vertex Cover* of *G* if for every $e = (u, v) \in E$, either $u \in \mathcal{K}$ or $v \in \mathcal{K}$.

proof: By definition, the set \mathcal{I} is an Independent set if (and only if) for every $u \in \mathcal{I}, v \in \mathcal{I} \setminus \{u\}$, that $(u, v) \notin E$.

This is the case if and only if for every $(u, v) \in E$, at least one of u, v is *not* in \mathcal{I} . This is the case if and only if if for every $(u, v) \in E$, either $u \in V \setminus \mathcal{I}$ or $v \in V \setminus \mathcal{I}$.

- ▶ J is an *Independent Set* of G if for every $u \in J, v \in J \setminus \{u\}$, that $(u, v) \notin E$.
- ▶ \mathcal{K} is a *Vertex Cover* of *G* if for every $e = (u, v) \in E$, either $u \in \mathcal{K}$ or $v \in \mathcal{K}$.

proof: By definition, the set \mathcal{I} is an Independent set if (and only if) for every $u \in \mathcal{I}, v \in \mathcal{I} \setminus \{u\}$, that $(u, v) \notin E$.

This is the case if and only if for every $(u, v) \in E$, at least one of u, v is *not* in \mathfrak{I} . This is the case if and only if if for every $(u, v) \in E$, either $u \in V \setminus \mathfrak{I}$ or $v \in V \setminus \mathfrak{I}$. This is the case (by definition) if and only if $V \setminus \mathfrak{I}$ is a Vertex Cover for G.

- ▶ J is an *Independent Set* of G if for every $u \in J, v \in J \setminus \{u\}$, that $(u, v) \notin E$.
- ▶ \mathcal{K} is a *Vertex Cover* of *G* if for every $e = (u, v) \in E$, either $u \in \mathcal{K}$ or $v \in \mathcal{K}$.

proof: By definition, the set \mathcal{I} is an Independent set if (and only if) for every $u \in \mathcal{I}, v \in \mathcal{I} \setminus \{u\}$, that $(u, v) \notin E$.

This is the case if and only if for every $(u, v) \in E$, at least one of u, v is *not* in \mathfrak{I} . This is the case if and only if if for every $(u, v) \in E$, either $u \in V \setminus \mathfrak{I}$ or $v \in V \setminus \mathfrak{I}$. This is the case (by definition) if and only if $V \setminus \mathfrak{I}$ is a Vertex Cover for G.

Implications for the two decision problems:

G has an Independent Set \mathfrak{I} of size $|\mathfrak{I}| \ge k$ \Leftrightarrow *G* has a Vertex Cover $V \setminus \mathfrak{I}$ such that $|\mathfrak{I}| \ge k$ \Leftrightarrow *G* has a Vertex Cover \mathfrak{K} such that $|\mathfrak{K}| \le (n-k)$.

- ▶ Very straightforward "reduction" from INDEPENDENT SET to VERTEX COVER, and vice versa.
- Really simple reduction, graph doesn't change, just flip between k and n-k for size parameter.

Therefore, INDEPENDENT SET is NP-complete \Leftrightarrow VERTEX COVER is NP-complete.

Rare to have "reductions" which work in both directions.

Implications for the approximation problems:

Hypothesis: We have an approximation algorithm for VERTEX COVER with approximation ration of α , for $\alpha > 1$.

So the algorithm will return ℓ satisfying $\ell \leq \alpha \cdot OPT_{VC}(G)$, where $OPT_{VC}(G)$ is the optimum/minimum size of a VC for G.

What does $n - \ell$ mean in relation to the maximum Independent Set for G? (remember maximum has size $n - OPT_{VC}(G)$). We **know** that

$$n - \ell \geq n - \alpha \cdot OPT_{VC}(G) = (n - OPT_{VC}(G)) - (\alpha - 1)OPT_{VC}(G)$$

We would like $n - \ell \geq \frac{1}{\beta} \left(n - OPT_{VC}(G) \right)$ for some $\beta > 1$

But imagine α of the Vertex Cover is $\alpha = 2$. Then taking $n - \ell$ for Independent Set gives the bound

$$n - \ell \geq (n - OPT_{VC}(G)) - OPT_{VC}(G)$$

However, there may be graphs where $OPT_{VC}(G)$ is n/2 or even greater.

So $n - \ell$ may be arbitrarily close to 0.

Problem is the - in the conversion between the two problems: subtraction does not preserve approximation.