
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 8: Context-Free grammars and parsing

algorithms

John Longley

week 6: Mon 24th - Wed 28th February, 2025

1. Recall the following simple context-free grammar for arithmetic expressions from Lec-
ture 22. The start symbol is Exp.

Exp → Var | Num | (Exp)

Exp → Exp + Exp

Exp → Exp ∗ Exp

Var → x | y | z
Num → 0 | · · · | 9

(a) How many syntax trees are there for each of the following three strings? Draw
them all.

3 + x ∗ y 3 + (x ∗ y) z + 10

(b) Design a new context-free grammar that generates exactly the same language as
the one above, but with the property that it is unambiguous: every string in the
language should have exactly one syntax tree. Informally, your grammar should
enforce the familiar convention that * takes precedence over +. You will find it
helpful to introduce some additional non-terminal symbols.

[Hint: First try to do this for the grammar with the rule for Exp ∗ Exp omitted.
To ensure that a string like 3 + 4 + 5 has only one tree, you might want to draw
inspiration from the grammar for comma-separated lists in Lecture 21. Then try
to adapt your grammar to cater for *, building in the precedence rule.]

(c) For the grammar you have designed in part (b), draw the unique syntax tree for
any of the strings from part (a) that had more than one syntax tree with respect
to the original grammar.

1

2. Consider the following context free grammar with start symbol S:

S → NP VP PP → Pre NP
S → I VP PP V → ate

NP → Det N Det → the | a
VP → ate NP N → fork | salad
VP → V Pre → with

(a) Convert this grammar to Chomsky Normal Form (see Lecture 23).

(b) Use the CYK algorithm from Lecture 23 to parse the sentence

I ate the salad with a fork

(c) How many complete analyses of the sentence do you get? Draw their syntax
trees.

(d) Now add an extra production rule to the CNF grammar to allow us to parse the
overall NP ‘the salad with a fork’ as a NP followed by a PP.

Revise your CYK chart or graph to include any new entries this introduces.

How many complete analyses are there now for the overall sentence “I ate . . .”?

3. Consider the following grammar for arithmetic expressions such as (n ∗ n ∗ n). Here
n stands for the lexical category of numeric literals such as 5 and −23.

Terminals: (,), ∗, n
Nonterminals: Exp, Ops

Productions: Exp → n Ops | (Exp)

Ops → ε | ∗ n Ops

Start symbol: Exp

This grammar is somewhat restrictive — for example, it does not admit the string
(n ∗ n) ∗ n — but it will do as an example.

This is in fact an LL(1) grammar with the following parse table:

() ∗ n $
Exp (Exp) n Ops
Ops ε ∗ n Ops ε

Here, for example, the top left entry (Exp) stands for the production Exp → (Exp).

(a) Using this table, apply the LL(1) parsing algorithm from Lecture 24 to the input

(n ∗ n)

At each step, show the operation applied, the input string remaining, and the
stack state, as in the lecture.

(b) For each of the following three input strings, explain how and where an error
arises in the course of the LL(1) parsing algorithm. In each case, suggest an
error message that an LL(1) parser could issue to the author of the input string.

() n) n ∗

2

