
Informatics 2 – Introduction to Algorithms

and Data Structures

Solutions for tutorial 8

1. We are studying the following simple context-free grammar for arithmetic expressions
from Lecture 22. The start symbol is Exp.

Exp → Var | Num | (Exp)

Exp → Exp + Exp

Exp → Exp ∗ Exp

Var → x | y | z
Num → 0 | · · · | 9

(a) We need to draw all possible syntax trees for each of the following three strings.

3 + x ∗ y 3 + (x ∗ y) z + 10

answer:

3 + x * y has two trees:

Exp

Exp

Exp

Num

3

+ Exp

Var

x

* Exp

Var

y

Exp

Exp

Num

3

+ Exp

Exp

Var

x

* Exp

Var

y

3 + (x * y) has just one tree:

1

Exp

Exp

Num

3

+ Exp

(Exp

Exp

Var

x

* Exp

Var

y

)

z + 10 has no trees. This is not a sentence of the language: our grammar doesn’t
cater for multi-digit numerals like 10.

(b) We need to design a new context-free grammar that generates exactly the same
language as the one above, but with the property that it is unambiguous: every
string in the language should have exactly one syntax tree. The grammar should
enforce the familiar convention that * takes precedence over +.

answer: First for the grammar with the clause for ∗ omitted: The key obser-
vation is that a general expression is a list of one or more ‘simple expressions’,
separated by +. Drawing inspiration from the comma list example, the following
grammar does the trick:

Exp → SimpleExp PlusList

SimpleExp → Var | Num | (Exp)

PlusList → ε | + SimpleExp PlusList

(with the same rules for Var and Num as before). Intuitively, we here distinguish
two ‘levels’ of expressions, corresponding to Exp and SimpleExp. To cater for ∗ as
well, and to enforce the precedence rule, we can extend this idea to allow three
levels:

Exp → Exp1 PlusList

Exp1 → SimpleExp TimesList

SimpleExp → Var | Num | (Exp)

TimesList → ε | ∗ SimpleExp TimesList

PlusList → ε | + Exp1 PlusList

(plus the usual Var and Num rules). Other solutions are possible, but the above
grammar turns out to be particularly well-adapted to ‘left-to-right parsing’.)

(c) For the grammar we have designed in part (b), we must draw the unique syntax
tree for any of the strings from part (a) that originally had more than one syntax
tree.

2

answer: The unique syntax tree for 3 + x * y is now:

Exp

Exp1

SimpleExp

Num

3

TimesList

ε

PlusList

+ ExpOne

SimpleExp

Var

x

TimesList

* SimpleExp

Var

y

TimesList

ε

PlusList

ε

Here we include explicit ε’s for clarity, though of course they contribute nothing
to the string in question.

2. Consider the following context free grammar with start symbol S:

S → NP VP PP → Pre NP
S → I VP PP V → ate

NP → Det N Det → the | a
VP → ate NP N → fork | salad
VP → V Pre → with

(a) Convert this grammar to Chomsky Normal Form (see Lecture 23).

Here we follow the order and numbering of steps given in the lecture slides and
live lecture. (This is slightly different from the order in the video lecture from
2021. In practice, there is a lot of flexibility and the order of steps doesn’t matter
much for small examples.)

Step 1: Eliminate the ternary rule S → I VP PP. We can do this by introducing
a fresh non-terminal X and replacing the rule by S → I X and X → VP PP.

Steps 2 and 3: There are no ε-rules, so these can be omitted. (In general, ε-rules
are more typical of formal language grammars than natural language ones.)

Step 4: We deal with the unit rule VP → V by replacing it with VP → ate.

Step 5: We introduce a separate non-terminal for each terminal, which we’ll do
by writing the same word capitalized in Roman font (e.g. I, Ate, The). We also
add corresponding expansion rules (e.g. I → I ; Ate → ate) and then replace all
terminals within non-unary right-hand sides by the corresponding non-terminal
(e.g. S → I VP PP; VP → Ate).

Discarding the rules for non-terminals now unreachable from S (e.g. V, The), the
resulting grammar is now as follows:

3

S → NP VP I → I
PP → Pre NP Ate → ate

S → I X Det → the | a
X → VP PP N → fork | salad

NP → Det N Pre → with
VP → Ate NP V → ate
VP → ate

(Other minor variations are of course acceptable, provided they are indeed in
CNF and are equivalent to the original grammar.)

(b) Use the CYK algorithm from Lecture 23 to parse ‘I ate the salad with a fork’.
Using the above CNF grammar, the CYK chart would be:

1 2 3 4 5 6 7
0 I S
1 V,VP,Ate VP X
2 Det NP
3 N
4 Pre PP
5 Det NP
6 N

(c) How many complete analyses of the sentence do you get? Just the one:

(S (I I) (X (VP (V ate)(NP(Det the)(N salad)))
(PP (Pre with)(NP (Det a) (N fork)))))

(d) Now add a further production rule to your CNF grammar to allow for the alter-
native prepositional phrase attachment, i.e. ‘the salad with a fork’. Revise your
CYK chart or graph to include any new entries this introduces.

(e) We could add a new rule

NP → NP PP

This would add an NP entry to cell (2,7), hence a VP entry to (1,7). However,
no new S entry would be added to (0,7), so there is still just one complete parse.
This is because the grammar lacks the means to derive I from NP.

3. The grammar:

Terminals: (,), ∗, n
Nonterminals: Exp, Ops

Productions: Exp → n Ops | (Exp)

Ops → ε | ∗ n Ops

Start symbol: Exp

The parse table:

() ∗ n $
Exp (Exp) n Ops
Ops ε ∗ n Ops ε

(a) Using this table, apply the LL(1) parsing algorithm to the input (n ∗ n).

4

Operation Input remaining Stack state
(n * n)$ Exp

Lookup (,Exp (n * n)$ (Exp)
Match (n * n)$ Exp)
Lookup n, Exp n * n)$ n Ops)
Match n * n)$ Ops)
Lookup *, Ops * n)$ * n Ops)
Match * n)$ n Ops)
Match n)$ Ops)
Lookup), Ops)$)
Match) $ STACK EMPTIES

AT END OF STRING:
SUCCESS!

(b) For each of the following three input strings, explain how and where an error
arises in the course of the LL(1) parsing algorithm. In each case, suggest a
reasonable error message.

() n) n ∗

• For (), the parser will encounter a blank table entry at), Exp.
Message: “) Found where expression expected.”

• For n), the stack will empty before end of input is reached.
Message: “) Found after end of expression.”

• For n*, the end of input will be reached with n Ops still on the stack, and
the parser gets stuck since the top of the stack is a terminal n no different
from $.
Message: “End of input found where numeric literal expected.”

John Longley

5

