
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 9 - NP-completeness, Approximation

1. A propositional formula φ over the logical variables {x1, . . . , xn} is in Conjunctive
Normal Form (CNF) if it is of the form

φ = C1 ∧ . . . ∧ Cm,

such that each clause Cj is a disjunction of literals over the xi variables (ie, every Cj

is (`j,1 ∨ . . . `j,r(j)) for some r(j) with each `j,h being xi or x̄i for some i).

The formula φ is said to be in 3-CNF when it is also the case that every clause Cj

contains 3 distinct literals (referring to three different variables).

We can consider the following two decision problems:

Sat: Given a CNF formula φ, determine whether there is a logical assignment to the
variables {x1, . . . , xn} which simultaneously satisfies all clauses of φ.

3-Sat: Given a 3-CNF formula φ, determine whether there is a logical assignment to
the variables {x1, . . . , xn} which simultaneously satisfies all clauses of φ.

(a) First show that both Sat and 3-Sat belong to the complexity class NP, by
describing a polynomial-time algorithm which can verify a given formula against
a solution/certificate.

(b) Then show that Sat ≤P 3-Sat (ie, that there is a polynomial-time reduction
from Sat to 3-Sat).

Hint: Think about introducing extra “dummy” variables to design with a 3-CNF
formula with the same constraints as the initial CNF formula.

Note that given the status of Sat as the canonical NP-complete problem, this gives
the proof that 3-Sat is also NP-complete.

We had already relied on the NP-completeness of 3-Sat in Lecture 26, therefore we
can see this question as “filling in a gap” in our coverage of NP-completeness so far.

2. In our lectures on dynamic programming, we considered the “coin changing” problem.
We can cast this as a decision problem, by asking whether the optimum solution is
≤ h for some given h.

Coins: Given the coin system with denominations c1 = 1, . . . , ck ∈ N, and a target
value v ∈ N, and a threshold count h ∈ N, is it the case that the minimum-cardinality
multiset of coins ( summing to v) has cardinality ≤ h?
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(a) We have already seen a dynamic programming algorithm which will take inputs
c1 = 1, . . . , ck ∈ N and v ∈ N, and return the minimum-cardinality multiset of
coins that sums to v.

Hence we can use this algorithm to solve the Coins decision problem, simply by
comparing its returned value against h.

Will this approach be polynomial-time in the size of the inputs to Coins? (these
being lg(v), lg(h) and lg(maxi ci)).

(b) We would like to show that Coins belongs to the class NP. Is it the case that a
“certificate” (multiset of coins of cardinality ≤ h) can be verified in time poly-
nomial in lg(v), lg(maxi ci) and lg(h)?

3. In Lecture 27 we covered an algorithm to derandomize the näıve randomized algorithm
(generate a uniform random assignment from {0, 1}n) for computing an assignment
which is expected to satisfy ≥ 7

8m clauses of a given 3-CNF formula with m clauses.

(a) Execute the derandomization algorithm on the following input formula, to find
an assignment which will satisfy at least 7

89 = 7.875 of the clauses (meaning 8 in
practice, as the number of clauses satisfies for a specific assignment must be an
integer value).

Φ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧
(x1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x3 ∨ x̄4) ∧
(x̄1 ∨ x̄3 ∨ x̄4) ∧ (x̄2 ∨ x̄3 ∨ x4) ∧ (x̄1 ∨ x3 ∨ x4).

(b) Suppose we wanted to apply this same derandomization method to more general
CNF formulas than 3-CNF. What main differences we would need to take care
of?

4. Given an undirected graph G = (V,E), and sets I,K ⊆ V , we say that

• I is an Independent Set of G if for every u ∈ I, v ∈ I \ {u}, that (u, v) /∈ E.

• K is a Vertex Cover of G if for every e = (u, v) ∈ E, either u ∈ K or v ∈ K.

We have already seen the following two Decision Problems in our lectures on NP-
completeness and approximation algorithms.

Independent Set: “Does the given graph have an Independent Set of size ≥ k?”

Vertex Cover: “Does the given graph have a Vertex Cover of size ≤ `?”.

(a) Show that I is an Independent Set of G ⇔ (V \ I) is a Vertex Cover of G.

What does this relationship tell us about the relationship between the two Deci-
sion problems above?

(b) Can we use the⇔ in (a) to infer any relationship about approximation algorithms
for the optimisation variants (“max” for Independent Set, “min” for Vertex
Cover) of these problems?
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5. (optional) Finally, we consider the problem 3-Colourable, which asks whether a
given graph G = (V,E) has a proper 3-colouring or not.

3-Col: Given an undirected graph G = (V,E), is there is an assignment c : V →
{blue, red, green} such that for every (u, v) ∈ E, c(u) 6= c(v)?

(Note the k-Col question can be defined for any k ≥ 2, and in fact the 2-Col question
is equivalent to asking whether a graph is bipartite.)

We will prove NP-completeness of 3-Col in this question in 3 steps:

(a) First show that 3-Col is in the class NP, by describing how we could verify a
certificate (proposed colouring c : V → {blue, red, green}) for G = (V,E) in time
polynomial in n = |V | and m = |E|.

(b) Next we consider the task of reducing the known 3-Sat problem to 3-Col. Our
first step for this reduction will be to build a graph which can “encode” the
conditions of a truth assignment for the logical variables {x1, x2, . . . , xn}.
Step 1 is as follows: we define first a “central triangle” on the special vertices
{T, F,B}, with the connecting edges (T, F ), (T,B), (F,B), where nodes T and F
will be used to set the “colour for True” and “colour for False”.

(We are ensured that if we have a proper 3-colouring, each of T, F,B must get
a different colour - I have labelled T as green, F as red and B as blue, but
it doesn’t matter which way they are assigned . . . what will be important in the
argument is “T ’s colour” and “F ’s colour”.)

Also, for every variable xi appearing in the 3-CNF formula Φ, we add the “xi
triangle” consisting of vertices xi and ¬xi together with the central vertex B.
This means that there is a specific node defined for every possible literal on the
n variables. The resulting graph is shown here:

Your first step is to justify the following claim:

Claim: The proper 3-colourings of the subgraph above are the colourings where
for every i = 1, . . . , n, exactly one of xi,¬xi has “T ’s colour” and the other one
has “F ’s colour”.
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(c) Step 2 of our reduction adds extra “gadgets” onto the assignment-setting sub-
graph from (b), to encode constraints equivalent to each clause Cj in Φ.

Consider any clause Cj of the formula Φ, made up of the three literals L1, L2
and L3 (so Cj was (L1 ∨ L2 ∨ L3)). Consider the following “2-triangle gadget”
connected to the 3 relevant literal nodes (set up in (b)), with the end node fixed
to “T ’s colour” (this achieved by connecting up to the “central triangle”).

Justify the following claim:

Claim: If we know that each of L1, L2, L3 can only be “T ’s colour” (green) or
“F ’s colour” (red), then there will be a proper 3-colouring of the “gadget” if and
only if at least one of L1, L2 and L3 is green.

(it will probably help to give names to the unlabelled vertices, to write your
argument)

(d) How can we combine (b) and (c) to achieve a full ≤P reduction from 3-Sat to
3-Col?

Mary Cryan, 7th March 2025
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