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• Auction  is truthful (DSIC) if:                     𝒜 ui(b; vi) ≤ ui(vi, b−i; vi) ∀b ∀i ∀vi
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[0,∞)



Myerson’s Characterization



Myerson’s Characterization

Roger Myerson (1951 - )

Nobel prize in Economics 
(2007)



Myerson’s Characterization [1981]



Myerson’s Characterization [1981]
An auction  is truthful if and only if, for any bidder  and all bid profiles :𝒜 = (a, b) i b−i

Roger Myerson



Myerson’s Characterization [1981]
An auction  is truthful if and only if, for any bidder  and all bid profiles :𝒜 = (a, b) i b−i

•  is a nondecreasing function of , andai(bi, b−i) bi

Roger Myerson



Myerson’s Characterization [1981]
An auction  is truthful if and only if, for any bidder  and all bid profiles :𝒜 = (a, b) i b−i

•  is a nondecreasing function of , andai(bi, b−i) bi

• payments are given by .pi(b) = ai(b) ⋅ bi − ∫
bi

0
ai(t, b−i) dt

Roger Myerson



Myerson’s Characterization [1981]
An auction  is truthful if and only if, for any bidder  and all bid profiles :𝒜 = (a, b) i b−i

•  is a nondecreasing function of , andai(bi, b−i) bi

• payments are given by .pi(b) = ai(b) ⋅ bi − ∫
bi

0
ai(t, b−i) dt

• The second-price auction (i.e., VCG) is truthful and welfare maximizing!

Roger Myerson



Myerson’s Characterization [1981]
An auction  is truthful if and only if, for any bidder  and all bid profiles :𝒜 = (a, b) i b−i

•  is a nondecreasing function of , andai(bi, b−i) bi

• payments are given by .pi(b) = ai(b) ⋅ bi − ∫
bi

0
ai(t, b−i) dt

• The second-price auction (i.e., VCG) is truthful and welfare maximizing!

• What if our goal is to maximize the seller’s revenue instead?

Roger Myerson



Myerson’s Characterization [1981]
An auction  is truthful if and only if, for any bidder  and all bid profiles :𝒜 = (a, b) i b−i

•  is a nondecreasing function of , andai(bi, b−i) bi

• payments are given by .pi(b) = ai(b) ⋅ bi − ∫
bi

0
ai(t, b−i) dt

• The second-price auction (i.e., VCG) is truthful and welfare maximizing!

• What if our goal is to maximize the seller’s revenue instead?

• Shall we still always sell to the highest bidder?
Roger Myerson
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Welfare vs Revenue
Example: Single-Bidder Deterministic Auctions

allocation a(v)

bid v0

1

r

• Always selling for free ( ) 
maximizes wellfare

r = 0

‣ However: this gives zero revenue 
to the seller!

• Where shall we set the selling 
price , in order to guarantee 
“good” revenue?

r

‣ Highly dependent on the (private) 
value  of the bidder.v
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• The seller/auction-designer has incomplete knowledge of the bidder values :vi

•  are independent random variablesv1, v2, …, vn

• drawn from distributions (“priors”)  supported over F1, F2, …, Fn [0,1]

• Optimization objectives are defined in expectation:

• Goal: find a revenue-maximizing truthful auction

W(𝒜) := 𝔼v∼F [
n

∑
i=1

ai(v)vi]
Welfare

R(𝒜) := 𝔼v∼F [
n

∑
i=1

pi(v)]
Revenue

max
truthful 𝒜

R(𝒜) = max
monotone a

𝔼 [
n

∑
i=1 (ai(v)vi − ∫

vi

0
ai(t, v−i) dt)]
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a(v)

v0

1

r

• Bidder wins if and only if v ≥ r
‣ And then pays r

• Expected revenue: 
r ⋅ Prob[v ≥ r] = r(1 − F(r))

• Optimal “monopoly reserve”: 
r* = arg max

r∈[0,1]
r(1 − F(r))

• Example: Uniform distribution
‣ r(1 − F(r)) = r(1 − r)
‣ ; optimal revenue r* = 1/2 1/4

“Critical” value: Myerson’s lemma
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• The virtual value function of bidder  is defined byi

ϕi(vi) := vi −
1 − Fi(vi)

fi(vi)

‣ If  is (strictly) increasing, we will call distribution  (strictly) regular. ϕi Fi

For any truthful auction  it holds that(a, p)

.𝔼v∼F [
n

∑
i=1

pi(v)] = 𝔼v∼F [
n

∑
i=1

ai(v)ϕi(vi)]

THEOREM (R. Myerson [1981])

Roger Myerson

“virtual” social welfarerevenue
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1 − F(x)

f(x)
= x −

1 − x
1

= 2x − 1
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Myerson’s Optimal Auction

Assuming strictly regular priors: 

• Selling the item to the bidder with the highest* nonnegative virtual value 
1. is monotone (i.e., truthful)
2. maximizes the seller’s revenue (i.e., is optimal)

• If, furthermore, the priors are identical (aka “iid”), then the optimal auction is 
simply a second-price auction with reserve price

r := ϕ−1(0)

For any truthful auction :  
𝒜 = (a, p)

R(𝒜) = 𝔼v∼F [
n

∑
i=1

ai(v)ϕi(vi)]
Optimal revenue    ≤ 𝔼v∼F [max

i∈[n]
ϕi(vi)+]=

Equal to monopoly reserve

r* = arg max

x∈[0,1]
x(1 − F(x))

*ties occur with zero probability

Notation:  z+ = max{z,0}
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𝔼vi∼Fi [pi(v)] = 𝔼vi∼Fi [ϕi(vi)xi(v)]

𝔼v∼F[p(v)] = ∫
1

0
v ⋅ x(v)f(v) − x(v)(1 − F(v)) dv

= ∫
1

0
x(v)[v −

1 − F(v)
f(v) ] f(v) dv

= ∫
1

0
x(v)ϕ(v) ⋅ f(v) dv

= 𝔼v∼F[x(v)ϕ(v)] .
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Non-Identical Priors
• The optimal auction might be “complicated”, or even practically infeasible 
‣ Higher virtual value does not always correspond to higher value!

• How much revenue do we loose by restricting to simple auction formats? For 
example:
‣ Second-price auction; with reserves or not
‣ Posted pricing (“take-it-or-leave-it”)
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For regular iid priors, the expected revenue of the second-price auction (with no 
reserve) on  bidders is at least the expected revenue of the optimal auction 
with on  bidders.

n + 1
n

THEOREM (J. Bulow & P. Klemperer [1996])

For  bidders with regular iid priors, the second-price auction achieves at least a 
-fraction of the optimal expected revenue.

n
n − 1

n

COROLLARY

Identical Bidders
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Second-Price with Reserves & Pricing
Optimal Revenue Approximation for Non-Identical Regular Bidders

• Selling the item by posting the same price to all bidders, has an 
approximation ratio of (exactly)

 
1

2.62
= 0.382

• The approximation ratio of the best second-price auction with the same (aka 
“anonymous”) reserve price for all bidders lies in

 [1/e, 1/2.62] = [0.368, 0.382]

• Selling via a second-price auction with bidder-specific reserves achieves an 
approximation ratio of (exactly)

1
2

= 0.5



A Small Glimpse Beyond: 
Multi-item Auctions
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Multi-Dimensional Revenue Maximization
Complications

• Fundamental technical obstacles, even for a single bidder!


• Randomization is required, in general, for optimality


‣ Uncountably infinitely many “menus”, even for two items.


• Computational hardness barriers


• Large constant approximations only (e.g., 8)


• Generally: the exact structure, and key computational properties, of the optimal 
auctions still elude us!


‣ Resolved only for a single-bidder, small number of items, and very specific 
distributions (most notably, uniform)
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Thank you!


